2,074 research outputs found

    Quasi-Linear Cellular Automata

    Full text link
    Simulating a cellular automaton (CA) for t time-steps into the future requires t^2 serial computation steps or t parallel ones. However, certain CAs based on an Abelian group, such as addition mod 2, are termed ``linear'' because they obey a principle of superposition. This allows them to be predicted efficiently, in serial time O(t) or O(log t) in parallel. In this paper, we generalize this by looking at CAs with a variety of algebraic structures, including quasigroups, non-Abelian groups, Steiner systems, and others. We show that in many cases, an efficient algorithm exists even though these CAs are not linear in the previous sense; we term them ``quasilinear.'' We find examples which can be predicted in serial time proportional to t, t log t, t log^2 t, and t^a for a < 2, and parallel time log t, log t log log t and log^2 t. We also discuss what algebraic properties are required or implied by the existence of scaling relations and principles of superposition, and exhibit several novel ``vector-valued'' CAs.Comment: 41 pages with figures, To appear in Physica

    Toric ideals of normalized graph algebras

    Full text link
    A graph-theoretic method, simpler than existing ones, is used to characterize the minimal set of monomial generators for the integral closure of any algebra of polynomials generated by quadratic monomials. The toric ideal of relations between these generators is generated by a set of binomials, defined graphically. The spectra of the original algebra and of its integral closure turn out to be canonically homeomorphic.Comment: 9 pages, no figures. v2: major rewrite. v3: minor improvements. v4: new title, old reference located, other small change

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DET⊆NC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits
    • …
    corecore