5 research outputs found

    Non-black-box simulation from one-way functions and applications to resettable security

    Get PDF
    The simulation paradigm, introduced by Goldwasser, Micali and Rackoff, is of fundamental importance to modern cryptography. In a breakthrough work from 2001, Barak (FOCS’01) introduced a novel non-black-box simulation technique. This technique enabled the construction of new cryptographic primitives, such as resettably-sound zero-knowledge arguments, that cannot be proven secure using just black-box simulation techniques. The work of Barak and its follow-ups, however, all require stronger cryptographic hardness assumptions than the minimal assumption of one-way functions: the work of Barak requires the existence of collision-resistant hash functions, and a very recent result by Bitansky and Paneth (FOCS’12) instead requires the existence of an Oblivious Transfer protocol. In this work, we show how to perform non-black-box simulation assuming just the existence of one-way functions. In particular, we demonstrate the existence of a constant-round resettably-sound zero-knowledge argument based only on the existence of one-way functions. Using this technique, we determine necessary and sufficient assumptions for several other notions of resettable security of zero-knowledge proofs. An additional benefit of our approach is that it seemingly makes practical implementations of non-black-box zero-knowledge viable

    Constant-round Leakage-resilient Zero-knowledge from Collision Resistance

    Get PDF
    In this paper, we present a constant-round leakage-resilient zero-knowledge argument system for NP under the assumption of the existence of collision-resistant hash function family. That is, using collision-resistant hash functions, we construct a constant-round zero-knowledge argument system that has the following zero-knowledge property: Even against any cheating verifier that obtains arbitrary amount of leakage on the prover\u27s internal secret state, a simulator can simulate the verifier\u27s view by obtaining the same amount of leakage on the witness. Previously, leakage-resilient zero-knowledge proofs/arguments for NP were constructed only under a relaxed security definition (Garg, Jain, and Sahai, CRYPTO\u2711) or under the DDH assumption (Pandey, TCC\u2714). Our leakage-resilient zero-knowledge argument system satisfies an additional property that it is simultaneously leakage-resilient zero-knowledge, meaning that both zero-knowledgeness and soundness hold in the presence of leakage

    Constant-Round Concurrent Zero-knowledge from Indistinguishability Obfuscation

    Get PDF
    We present a constant-round concurrent zero-knowledge protocol for NP. Our protocol relies on the existence of families of collision-resistant hash functions, one-way permutations, and indistinguishability obfuscators for P/poly (with slightly super-polynomial security)

    Post-quantum Zero Knowledge in Constant Rounds

    Get PDF
    We construct a constant-round zero-knowledge classical argument for NP secure against quantum attacks. We assume the existence of Quantum Fully-Homomorphic Encryption and other standard primitives, known based on the Learning with Errors Assumption for quantum algorithms. As a corollary, we also obtain a constant-round zero-knowledge quantum argument for QMA. At the heart of our protocol is a new no-cloning non-black-box simulation technique
    corecore