91,475 research outputs found

    Superconducting Phase with Fractional Vortices in the Frustrated Kagome Wire Network at f=1/2

    Full text link
    In classical XY kagome antiferromagnets, there can be a novel low temperature phase where ψ3=ei3θ\psi^3=e^{i3\theta} has quasi-long-range order but ψ\psi is disordered, as well as more conventional antiferromagnetic phases where ψ\psi is ordered in various possible patterns (θ\theta is the angle of orientation of the spin). To investigate when these phases exist in a physical system, we study superconducting kagome wire networks in a transverse magnetic field when the magnetic flux through an elementary triangle is a half of a flux quantum. Within Ginzburg-Landau theory, we calculate the helicity moduli of each phase to estimate the Kosterlitz-Thouless (KT) transition temperatures. Then at the KT temperatures, we estimate the barriers to move vortices and effects that lift the large degeneracy in the possible ψ\psi patterns. The effects we have considered are inductive couplings, non-zero wire width, and the order-by-disorder effect due to thermal fluctuations. The first two effects prefer q=0q=0 patterns while the last one selects a 3×3\sqrt{3}\times\sqrt{3} pattern of supercurrents. Using the parameters of recent experiments, we conclude that at the KT temperature, the non-zero wire width effect dominates, which stabilizes a conventional superconducting phase with a q=0q=0 current pattern. However, by adjusting the experimental parameters, for example by bending the wires a little, it appears that the novel ψ3\psi^3 superconducting phase can instead be stabilized. The barriers to vortex motion are low enough that the system can equilibrate into this phase.Comment: 30 pages including figure

    Topological Color Codes and Two-Body Quantum Lattice Hamiltonians

    Get PDF
    Topological color codes are among the stabilizer codes with remarkable properties from quantum information perspective. In this paper we construct a four-valent lattice, the so called ruby lattice, governed by a 2-body Hamiltonian. In a particular regime of coupling constants, degenerate perturbation theory implies that the low energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. The gauge symmetry Z2×Z2\mathbf{Z}_{2}\times\mathbf{Z}_{2} of color code could already be realized by identifying three distinct plaquette operators on the lattice. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other giving rise to exact topological degeneracy of the model. Connection to 2-colexes can be established at the non-perturbative level. The particular structure of the 2-body Hamiltonian provides a fruitful interpretation in terms of mapping to bosons coupled to effective spins. We show that high energy excitations of the model have fermionic statistics. They form three families of high energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. Also, we use Jordan-Wigner transformation in order to test the integrability of the model via introducing of Majorana fermions. The four-valent structure of the lattice prevents to reduce the fermionized Hamiltonian into a quadratic form due to interacting gauge fields. We also propose another construction for 2-body Hamiltonian based on the connection between color codes and cluster states. We discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version

    Perturbative study of the Kitaev model with spontaneous time-reversal symmetry breaking

    Full text link
    We analyze the Kitaev model on the triangle-honeycomb lattice whose ground state has recently been shown to be a chiral spin liquid. We consider two perturbative expansions: the isolated-dimer limit containing Abelian anyons and the isolated-triangle limit. In the former case, we derive the low-energy effective theory and discuss the role played by multi-plaquette interactions. In this phase, we also compute the spin-spin correlation functions for any vortex configuration. In the isolated-triangle limit, we show that the effective theory is, at lowest nontrivial order, the Kitaev honeycomb model at the isotropic point. We also compute the next-order correction which opens a gap and yields non-Abelian anyons.Comment: 7 pages, 4 figures, published versio

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427
    • …
    corecore