2 research outputs found

    Millimeter-Wave Beamformed Full-dimensional MIMO Channel Estimation Based on Atomic Norm Minimization

    Full text link
    The millimeter-wave (mmWave) full-dimensional (FD) MIMO system employs planar arrays at both the base station and user equipment and can simultaneously support both azimuth and elevation beamforming. In this paper, we propose atomic-norm-based methods for mmWave FD-MIMO channel estimation under both uniform planar arrays (UPA) and non-uniform planar arrays (NUPA). Unlike existing algorithms such as compressive sensing (CS) or subspace methods, the atomic-norm-based algorithms do not require to discretize the angle spaces of the angle of arrival (AoA) and angle of departure (AoD) into grids, thus provide much better accuracy in estimation. In the UPA case, to reduce the computational complexity, the original large-scale 4D atomic norm minimization problem is approximately reformulated as a semi-definite program (SDP) containing two decoupled two-level Toeplitz matrices. The SDP is then solved via the alternating direction method of multipliers (ADMM) where each iteration involves only closed-form computations. In the NUPA case, the atomic-norm-based formulation for channel estimation becomes nonconvex and a gradient-decent-based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithms achieve better performance than the CS-based and subspace-based algorithms

    Beamforming Network Optimization for Reducing Channel Time Variation in High-Mobility Massive MIMO

    Full text link
    Communications in high-mobility environments have caught a lot of attentions recently. In this paper, fast time-varying channels for massive multiple-input multiple-output (MIMO) systems are addressed. We derive the exact channel power spectrum density (PSD) for the uplink from a high-speed railway (HSR) to a base station (BS) and propose to further reduce the channel time variation via beamforming network optimization. A large-scale uniform linear array (ULA) is equipped at the HSR to separate multiple Doppler shifts in angle domain through high-resolution transmit beamforming. Each branch comprises a dominant Doppler shift, which can be compensated to suppress the channel time variation, and we derive the channel PSD and the Doppler spread to assess the residual channel time variation. Interestingly, the channel PSD can be exactly expressed as the product of a pattern function and a beam-distortion function. The former reflects the impact of array aperture and is the converted radiation pattern of ULA, while the latter depends on the configuration of beamforming directions. Inspired by the PSD analysis, we introduce a common configurable amplitudes and phases (CCAP) parameter to optimize the beamforming network, by partly removing the constant modulus quantized phase constraints of matched filter (MF) beamformers. In this way, the residual Doppler shifts can be ulteriorly suppressed, further reducing the residual channel time variation. The optimal CCAP parameter minimizing the Doppler spread is derived in a closed form. Numerical results are provided to corroborate both the channel PSD analysis and the superiority of beamforming network optimization technique.Comment: Double columns, 13 pages, 10 figures, transactions pape
    corecore