1,498 research outputs found

    Q-learning with Nearest Neighbors

    Full text link
    We consider model-free reinforcement learning for infinite-horizon discounted Markov Decision Processes (MDPs) with a continuous state space and unknown transition kernel, when only a single sample path under an arbitrary policy of the system is available. We consider the Nearest Neighbor Q-Learning (NNQL) algorithm to learn the optimal Q function using nearest neighbor regression method. As the main contribution, we provide tight finite sample analysis of the convergence rate. In particular, for MDPs with a dd-dimensional state space and the discounted factor γ∈(0,1)\gamma \in (0,1), given an arbitrary sample path with "covering time" L L , we establish that the algorithm is guaranteed to output an ε\varepsilon-accurate estimate of the optimal Q-function using O~(L/(ε3(1−γ)7))\tilde{O}\big(L/(\varepsilon^3(1-\gamma)^7)\big) samples. For instance, for a well-behaved MDP, the covering time of the sample path under the purely random policy scales as O~(1/εd), \tilde{O}\big(1/\varepsilon^d\big), so the sample complexity scales as O~(1/εd+3).\tilde{O}\big(1/\varepsilon^{d+3}\big). Indeed, we establish a lower bound that argues that the dependence of Ω~(1/εd+2) \tilde{\Omega}\big(1/\varepsilon^{d+2}\big) is necessary.Comment: Accepted to NIPS 201

    Solving Factored MDPs with Hybrid State and Action Variables

    Full text link
    Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this paper, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a new hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function by a linear combination of basis functions and optimize its weights by linear programming. We analyze both theoretical and computational aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Multi-Objective Model Checking of Markov Decision Processes

    Get PDF
    We study and provide efficient algorithms for multi-objective model checking problems for Markov Decision Processes (MDPs). Given an MDP, M, and given multiple linear-time (\omega -regular or LTL) properties \varphi\_i, and probabilities r\_i \epsilon [0,1], i=1,...,k, we ask whether there exists a strategy \sigma for the controller such that, for all i, the probability that a trajectory of M controlled by \sigma satisfies \varphi\_i is at least r\_i. We provide an algorithm that decides whether there exists such a strategy and if so produces it, and which runs in time polynomial in the size of the MDP. Such a strategy may require the use of both randomization and memory. We also consider more general multi-objective \omega -regular queries, which we motivate with an application to assume-guarantee compositional reasoning for probabilistic systems. Note that there can be trade-offs between different properties: satisfying property \varphi\_1 with high probability may necessitate satisfying \varphi\_2 with low probability. Viewing this as a multi-objective optimization problem, we want information about the "trade-off curve" or Pareto curve for maximizing the probabilities of different properties. We show that one can compute an approximate Pareto curve with respect to a set of \omega -regular properties in time polynomial in the size of the MDP. Our quantitative upper bounds use LP methods. We also study qualitative multi-objective model checking problems, and we show that these can be analysed by purely graph-theoretic methods, even though the strategies may still require both randomization and memory.Comment: 21 pages, 2 figure
    • …
    corecore