7,336 research outputs found

    Non-linear Symmetry-preserving Observer on Lie Groups

    Full text link
    In this paper we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intrinsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which reminds of the linear stationary case.Comment: 12 pages. Submitted. Preliminary version publicated in french in the CIFA proceedings and IFAC0

    A Separation Principle on Lie Groups

    Full text link
    For linear time-invariant systems, a separation principle holds: stable observer and stable state feedback can be designed for the time-invariant system, and the combined observer and feedback will be stable. For non-linear systems, a local separation principle holds around steady-states, as the linearized system is time-invariant. This paper addresses the issue of a non-linear separation principle on Lie groups. For invariant systems on Lie groups, we prove there exists a large set of (time-varying) trajectories around which the linearized observer-controler system is time-invariant, as soon as a symmetry-preserving observer is used. Thus a separation principle holds around those trajectories. The theory is illustrated by a mobile robot example, and the developed ideas are then extended to a class of Lagrangian mechanical systems on Lie groups described by Euler-Poincare equations.Comment: Submitted to IFAC 201

    Observers for invariant systems on Lie groups with biased input measurements and homogeneous outputs

    Full text link
    This paper provides a new observer design methodology for invariant systems whose state evolves on a Lie group with outputs in a collection of related homogeneous spaces and where the measurement of system input is corrupted by an unknown constant bias. The key contribution of the paper is to study the combined state and input bias estimation problem in the general setting of Lie groups, a question for which only case studies of specific Lie groups are currently available. We show that any candidate observer (with the same state space dimension as the observed system) results in non-autonomous error dynamics, except in the trivial case where the Lie-group is Abelian. This precludes the application of the standard non-linear observer design methodologies available in the literature and leads us to propose a new design methodology based on employing invariant cost functions and general gain mappings. We provide a rigorous and general stability analysis for the case where the underlying Lie group allows a faithful matrix representation. We demonstrate our theory in the example of rigid body pose estimation and show that the proposed approach unifies two competing pose observers published in prior literature.Comment: 11 page

    Gradient-like observer design on the Special Euclidean group SE(3) with system outputs on the real projective space

    Full text link
    A nonlinear observer on the Special Euclidean group SE(3)\mathrm{SE(3)} for full pose estimation, that takes the system outputs on the real projective space directly as inputs, is proposed. The observer derivation is based on a recent advanced theory on nonlinear observer design. A key advantage with respect to existing pose observers on SE(3)\mathrm{SE(3)} is that we can now incorporate in a unique observer different types of measurements such as vectorial measurements of known inertial vectors and position measurements of known feature points. The proposed observer is extended allowing for the compensation of unknown constant bias present in the velocity measurements. Rigorous stability analyses are equally provided. Excellent performance of the proposed observers are shown by means of simulations

    Output Regulation for Systems on Matrix Lie-group

    Full text link
    This paper deals with the problem of output regulation for systems defined on matrix Lie-Groups. Reference trajectories to be tracked are supposed to be generated by an exosystem, defined on the same Lie-Group of the controlled system, and only partial relative error measurements are supposed to be available. These measurements are assumed to be invariant and associated to a group action on a homogeneous space of the state space. In the spirit of the internal model principle the proposed control structure embeds a copy of the exosystem kinematic. This control problem is motivated by many real applications fields in aerospace, robotics, projective geometry, to name a few, in which systems are defined on matrix Lie-groups and references in the associated homogenous spaces

    Symmetry-preserving Observers

    Full text link
    This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist in a copy of the system equation and a correction term, and we give a constructive method (based on the Cartan moving-frame method) to find all the symmetry-preserving correction terms. They rely on an invariant frame (a classical notion) and on an invariant output-error, a less standard notion precisely defined here. For each example, the convergence analysis relies also on symmetries consideration with a key use of invariant state-errors. For the non-holonomic car and the inertial navigation system, the invariant state-errors are shown to obey an autonomous differential equation independent of the system trajectory. This allows us to prove convergence, with almost global stability for the non-holonomic car and with semi-global stability for the inertial navigation system. Simulations including noise and bias show the practical interest of such invariant asymptotic observers for the inertial navigation system.Comment: To be published in IEEE Automatic Contro
    • …
    corecore