389 research outputs found

    A low power and high performance hardware design for automatic epilepsy seizure detection

    Get PDF
    An application specific integrated design using Quadrature Linear Discriminant Analysis is proposed for automatic detection of normal and epilepsy seizure signals from EEG recordings in epilepsy patients. Five statistical parameters are extracted to form the feature vector for training of the classifier. The statistical parameters are Standardised Moment, Co-efficient of Variance, Range, Root Mean Square Value and Energy. The Intellectual Property Core performs the process of filtering, segmentation, extraction of statistical features and classification of epilepsy seizure and normal signals. The design is implemented in Zynq 7000 Zc706 SoC with average accuracy of 99%, Specificity of 100%, F1 score of 0.99, Sensitivity of  98%  and Precision of 100 % with error rate of 0.0013/hr., which is approximately zero false detectio

    Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

    Get PDF
    The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows

    Components of Soft Computing for Epileptic Seizure Prediction and Detection

    Get PDF
    Components of soft computing include machine learning, fuzzy logic, evolutionary computation, and probabilistic theory. These components have the cognitive ability to learn effectively. They deal with imprecision and good tolerance of uncertainty. Components of soft computing are needed for developing automated expert systems. These systems reduce human interventions so as to complete a task essentially. Automated expert systems are developed in order to perform difficult jobs. The systems have been trained and tested using soft computing techniques. These systems are required in all kinds of fields and are especially very useful in medical diagnosis. This chapter describes the components of soft computing and review of some analyses regarding EEG signal classification. From those analyses, this chapter concludes that a number of features extracted are very important and relevant features for classifier can give better accuracy of classification. The classifier with a suitable learning method can perform well for automated epileptic seizure detection systems. Further, the decomposition of EEG signal at level 4 is sufficient for seizure detection

    Comparison of EEG based epilepsy diagnosis using neural networks and wavelet transform

    Full text link
    Epilepsy is one of the common neurological disorders characterized by recurrent and uncontrollable seizures, which seriously affect the life of patients. In many cases, electroencephalograms signal can provide important physiological information about the activity of the human brain which can be used to diagnose epilepsy. However, visual inspection of a large number of electroencephalogram signals is very time-consuming and can often lead to inconsistencies in physicians' diagnoses. Quantification of abnormalities in brain signals can indicate brain conditions and pathology so the electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. In this article, an attempt has been made to create a single instruction for diagnosing epilepsy, which consists of two steps. In the first step, a low-pass filter was used to preprocess the data and three separate mid-pass filters for different frequency bands and a multilayer neural network were designed. In the second step, the wavelet transform technique was used to process data. In particular, this paper proposes a multilayer perceptron neural network classifier for the diagnosis of epilepsy, that requires normal data and epilepsy data for education, but this classifier can recognize normal disorders, epilepsy, and even other disorders taught in educational examples. Also, the value of using electroencephalogram signal has been evaluated in two ways: using wavelet transform and non-using wavelet transform. Finally, the evaluation results indicate a relatively uniform impact factor on the use or non-use of wavelet transform on the improvement of epilepsy data functions, but in the end, it was shown that the use of perceptron multilayer neural network can provide a higher accuracy coefficient for experts.Comment: 8 pages, 4 tables, 3 figure

    Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel

    Get PDF
    Seizure events in newborns change in frequency, morphology, and propagation. This contextual information is explored at the classifier level in the proposed patient-independent neonatal seizure detection system. The system is based on the combination of a static and a sequential SVM classifier. A Gaussian dynamic time warping based kernel is used in the sequential classifier. The system is validated on a large dataset of EEG recordings from 17 neonates. The obtained results show an increase in the detection rate at very low false detections per hour, particularly achieving a 12% improvement in the detection of short seizure events over the static RBF kernel based system

    A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method

    Get PDF
    Electroencephalography (EEG) signals have been widely used to diagnose brain diseases for instance epilepsy, Parkinson's Disease (PD), Multiple Skleroz (MS), and many machine learning methods have been proposed to develop automated disease diagnosis methods using EEG signals. In this method, a multilevel machine learning method is presented to diagnose epilepsy disease. The proposed multilevel EEG classification method consists of pre-processing, feature extraction, feature concatenation, feature selection and classification phases. In order to create levels, Tunable-Q wavelet transform (TQWT) is chosen and 25 frequency coefficients sub-bands are calculated by using TQWT in the pre-processing. In the feature extraction phase, quadruple symmetric pattern (QSP) is chosen as feature extractor and extracts 256 features from the raw EEG signal and the extracted 25 sub-bands. In the feature selection phase, neighborhood component analysis (NCA) is used. The 128, 256, 512 and 1024 most significant features are selected in this phase. In the classification phase, k nearest neighbors (kNN) classifier is utilized as classifier. The proposed method is tested on seven cases using Bonn EEG dataset. The proposed method achieved 98.4% success rate for 5 classes case. Therefore, our proposed method can be used in bigger datasets for more validation
    corecore