3 research outputs found

    Efficacy of Flapping-wing Flight Via Dual Piezoelectric Actuation

    Get PDF
    A novel piezoelectric-actuated wing system featuring dual actuators for increased wing control is presented and evaluated for its forward-flight characteristics via theoretical modeling and physical wind tunnel testing. Flapping wing aerial systems serve as a middle ground between the traditional fixed-wing and rotary systems. Flapping wing aerial systems exhibit high maneuverability and stability at low speeds (like rotary systems) while maintaining increased efficiency (like fixed-wing systems). Flapping wings also eliminate the necessity of dangerous fast-moving propellers and open the door to actuation mechanisms other than traditional motors. This research explores one of these alternatives: the piezoelectric bending actuator. Piezoelectric materials produce a mechanical strain when an electric charge is applied. With an applied sinusoidal voltage, cantilevered bending piezoelectric actuators create oscillatory motion at the free end that can be translated into wing movement much more directly than a rotational motor. This direct actuation eliminates the need for gears and provides a mechanism for reducing the system\u27s weight. Furthermore, the simplified mechanism can improve robustness by removing contact surfaces that can become clogged or worn (e.g., using gears). While piezoelectric flapping-wing flight has many potential benefits, the combination has only been explored in insect-inspired hovering flight. This work explores the feasibility of larger, forward-flight systems to identify a framework for piezoelectrically-driven flapping-wing vehicles with wing-bending control. Theoretical and experimental analysis methods are presented to study piezoelectric flapping wing motion characteristics for lift and drag effects in flapping-wing aerial systems

    Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    No full text
    Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used to increase the output displacement at a lower voltage. The system is analytically modeled with Lagrangian functional and Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally realized to demonstrate its enhanced capabilities. The model is validated using an experimental device with several pretensions of the loading spring, therein representing three interesting cases: a linear system, a low natural frequency system with a pre-buckled beam, and a system with a buckled beam. The motivating hypothesis for the current work is that nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric actuator’s displacement output. The most practical configuration seems to be the pre-buckled case, in which the proposed system has a low natural frequency, a high tip displacement, and a stable balanced position
    corecore