17 research outputs found

    Non-Linear Domain Adaptation with Boosting

    Get PDF
    A common assumption in machine vision is that the training and test samples are drawn from the same distribution. However, there are many problems when this assumption is grossly violated, as in bio-medical applications where different acquisitions can generate drastic variations in the appearance of the data due to changing experimental conditions. This problem is accentuated with 3D data, for which annotation is very time-consuming, limiting the amount of data that can be labeled in new acquisitions for training. In this paper we present a multi-task learning algorithm for domain adaptation based on boosting. Unlike previous approaches that learn task-specific decision boundaries, our method learns a single decision boundary in a shared feature space, common to all tasks. We use the {\em boosting-trick} to learn a non-linear mapping of the observations in each task, with no need for specific a-priori knowledge of its global analytical form. This yields a more parameter-free domain adaptation approach that successfully leverages learning on new tasks where labeled data is scarce. We evaluate our approach on two challenging bio-medical datasets and achieve a significant improvement over the state of the art

    Domain Adaptation for Microscopy Imaging

    Get PDF
    Electron and Light Microscopy imaging can now deliver high-quality image stacks of neural structures. However, the amount of human annotation effort required to analyze them remains a major bottleneck. While Machine Learning algorithms can be used to help automate this process, they require training data, which is time-consuming to obtain manually, especially in image stacks. Furthermore, due to changing experimental conditions, successive stacks often exhibit differences that are severe enough to make it difficult to use a classifier trained for a specific one on another. This means that this tedious annotation process has to be repeated for each new stack. In this paper we present a domain adaptation algorithm that addresses this issue by effectively leveraging labeled examples across different acquisitions and significantly reducing the annotation requirements. Our approach can handle complex, non-linear image feature transformations and scales to large microscopy datasets that often involve high-dimensional feature spaces and large 3D data volumes. We evaluate our approach on four challenging Electron and Light Microscopy applications that exhibit very different image modalities and where annotation is very costly. Across all applications we achieve a significant improvement over the state-of-the-art Machine Learning methods and demonstrate our ability to greatly reduce human annotation effort
    corecore