5,497 research outputs found

    Towards Data Privacy and Utility in the Applications of Graph Neural Networks

    Get PDF
    Graph Neural Networks (GNNs) are essential for handling graph-structured data, often containing sensitive information. It’s vital to maintain a balance between data privacy and usability. To address this, this dissertation introduces three studies aimed at enhancing privacy and utility in GNN applications, particularly in node classification, link prediction, and graph classification. The first work tackles celebrity privacy in social networks. We develop a novel framework using adversarial learning for link-privacy preserved graph embedding, which effectively safeguards sensitive links without compromising the graph’s structure and node attributes. This approach is validated using real social network data. In the second work, we confront challenges in federated graph learning with non-independent and identically distributed (non-IID) data. We introduce PPFL-GNN, a privacy-preserving federated graph neural network framework that mitigates overfitting on the client side and inefficient aggregation on the server side. It leverages local graph data for embeddings and employs embedding alignment techniques for enhanced privacy, addressing the hurdles in federated learning on non-IID graph data. The third work explores Few-Shot graph classification, which aims to classify novel graph types with limited labeled data. We propose a unique framework combining Meta-learning and contrastive learning to better utilize graph structures in molecular and social network datasets. Additionally, we offer benchmark graph datasets with extensive node-attribute dimensions for future research. These studies collectively advance the field of graph-based machine learning by addressing critical issues of data privacy and utility in GNN applications

    On Sampling Strategies for Neural Network-based Collaborative Filtering

    Full text link
    Recent advances in neural networks have inspired people to design hybrid recommendation algorithms that can incorporate both (1) user-item interaction information and (2) content information including image, audio, and text. Despite their promising results, neural network-based recommendation algorithms pose extensive computational costs, making it challenging to scale and improve upon. In this paper, we propose a general neural network-based recommendation framework, which subsumes several existing state-of-the-art recommendation algorithms, and address the efficiency issue by investigating sampling strategies in the stochastic gradient descent training for the framework. We tackle this issue by first establishing a connection between the loss functions and the user-item interaction bipartite graph, where the loss function terms are defined on links while major computation burdens are located at nodes. We call this type of loss functions "graph-based" loss functions, for which varied mini-batch sampling strategies can have different computational costs. Based on the insight, three novel sampling strategies are proposed, which can significantly improve the training efficiency of the proposed framework (up to ×30\times 30 times speedup in our experiments), as well as improving the recommendation performance. Theoretical analysis is also provided for both the computational cost and the convergence. We believe the study of sampling strategies have further implications on general graph-based loss functions, and would also enable more research under the neural network-based recommendation framework.Comment: This is a longer version (with supplementary attached) of the KDD'17 pape

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris
    • …
    corecore