89,845 research outputs found

    Noncommutative Geometry and The Ising Model

    Full text link
    The main aim of this work is to present the interpretation of the Ising type models as a kind of field theory in the framework of noncommutative geometry. We present the method and construct sample models of field theory on discrete spaces using the introduced tools of discrete geometry. We write the action for few models, then we compare them with various models of statistical physics. We construct also the gauge theory with a discrete gauge group.Comment: 12 pages, LaTeX, TPJU - 18/92, December 199

    Supersymmetric quantum theory and (non-commutative) differential geometry

    Get PDF
    We reconsider differential geometry from the point of view of the quantum theory of non-relativistic spinning particles, which provides examples of supersymmetric quantum mechanics. This enables us to encode geometrical structure in algebraic data consisting of an algebra of functions on a manifold and a family of supersymmetry generators represented on a Hilbert space. We show that known types of differential geometry can be classified in terms of the supersymmetries they exhibit. Replacing commutative algebras of functions by non-commutative *-algebras of operators, while retaining supersymmetry, we arrive at a formulation of non-commutative geometry encompassing and extending Connes' original approach. We explore different types of non-commutative geometry and introduce notions of non-commutative manifolds and non-commutative phase spaces. One of the main motivations underlying our work is to construct mathematical tools for novel formulations of quantum gravity, in particular for the investigation of superstring vacua.Comment: 125 pages, Plain TeX fil

    The geometry of the double gyroid wire network: quantum and classical

    Get PDF
    Quantum wire networks have recently become of great interest. Here we deal with a novel nano material structure of a Double Gyroid wire network. We use methods of commutative and non-commutative geometry to describe this wire network. Its non--commutative geometry is closely related to non-commutative 3-tori as we discuss in detail.Comment: pdflatex 9 Figures. Minor changes, some typos and formulation

    Non-commutative geometry and irreversibility

    Full text link
    A kinetics built upon qq-calculus, the calculus of discrete dilatations, is shown to describe diffusion on a hierarchical lattice. The only observable on this ultrametric space is the "quasi-position" whose eigenvalues are the levels of the hierarchy, corresponding to the volume ofphase space available to the system at any given time. Motion along the lattice of quasi-positions is irreversible.Comment: 15 pages, 2 figures, Revtex formatte

    Gravity in Non-Commutative Geometry

    Get PDF
    We study general relativity in the framework of non-commutative differential geometry. In particular, we introduce a gravity action for a space-time which is the product of a four dimensional manifold by a two-point space. In the simplest situation, where the Riemannian metric is taken to be the same on the two copies of the manifold, one obtains a model of a scalar field coupled to Einstein gravity. This field is geometrically interpreted as describing the distance between the two points in the internal space.Comment: ZU-TH-30/1992 and ETH/TH/92/44, 11 pages. (The earlier version of this paper was the incomplete and unedited file which accidently replaced the corrected file

    Differential Algebras in Non-Commutative Geometry

    Full text link
    We discuss the differential algebras used in Connes' approach to Yang-Mills theories with spontaneous symmetry breaking. These differential algebras generated by algebras of the form functions \otimes matrix are shown to be skew tensorproducts of differential forms with a specific matrix algebra. For that we derive a general formula for differential algebras based on tensor products of algebras. The result is used to characterize differential algebras which appear in models with one symmetry breaking scale.Comment: 21 page

    Supersymmetric quantum theory and non-commutative geometry

    Full text link
    Classical differential geometry can be encoded in spectral data, such as Connes' spectral triples, involving supersymmetry algebras. In this paper, we formulate non-commutative geometry in terms of supersymmetric spectral data. This leads to generalizations of Connes' non-commutative spin geometry encompassing non-commutative Riemannian, symplectic, complex-Hermitian and (Hyper-)Kaehler geometry. A general framework for non-commutative geometry is developed from the point of view of supersymmetry and illustrated in terms of examples. In particular, the non-commutative torus and the non-commutative 3-sphere are studied in some detail.Comment: 77 pages, PlainTeX, no figures; present paper is a significantly extended version of the second half of hep-th/9612205. Assumptions in Sect. 2.2.5 clarified; final version to appear in Commun.Math.Phy
    corecore