1,548 research outputs found

    Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors

    Full text link
    Unconditional image generation has recently been dominated by generative adversarial networks (GANs). GAN methods train a generator which regresses images from random noise vectors, as well as a discriminator that attempts to differentiate between the generated images and a training set of real images. GANs have shown amazing results at generating realistic looking images. Despite their success, GANs suffer from critical drawbacks including: unstable training and mode-dropping. The weaknesses in GANs have motivated research into alternatives including: variational auto-encoders (VAEs), latent embedding learning methods (e.g. GLO) and nearest-neighbor based implicit maximum likelihood estimation (IMLE). Unfortunately at the moment, GANs still significantly outperform the alternative methods for image generation. In this work, we present a novel method - Generative Latent Nearest Neighbors (GLANN) - for training generative models without adversarial training. GLANN combines the strengths of IMLE and GLO in a way that overcomes the main drawbacks of each method. Consequently, GLANN generates images that are far better than GLO and IMLE. Our method does not suffer from mode collapse which plagues GAN training and is much more stable. Qualitative results show that GLANN outperforms a baseline consisting of 800 GANs and VAEs on commonly used datasets. Our models are also shown to be effective for training truly non-adversarial unsupervised image translation

    Discriminator Rejection Sampling

    Full text link
    We propose a rejection sampling scheme using the discriminator of a GAN to approximately correct errors in the GAN generator distribution. We show that under quite strict assumptions, this will allow us to recover the data distribution exactly. We then examine where those strict assumptions break down and design a practical algorithm - called Discriminator Rejection Sampling (DRS) - that can be used on real data-sets. Finally, we demonstrate the efficacy of DRS on a mixture of Gaussians and on the SAGAN model, state-of-the-art in the image generation task at the time of developing this work. On ImageNet, we train an improved baseline that increases the Inception Score from 52.52 to 62.36 and reduces the Frechet Inception Distance from 18.65 to 14.79. We then use DRS to further improve on this baseline, improving the Inception Score to 76.08 and the FID to 13.75.Comment: Published as a conference paper at ICLR 201

    Visually-Aware Fashion Recommendation and Design with Generative Image Models

    Full text link
    Building effective recommender systems for domains like fashion is challenging due to the high level of subjectivity and the semantic complexity of the features involved (i.e., fashion styles). Recent work has shown that approaches to `visual' recommendation (e.g.~clothing, art, etc.) can be made more accurate by incorporating visual signals directly into the recommendation objective, using `off-the-shelf' feature representations derived from deep networks. Here, we seek to extend this contribution by showing that recommendation performance can be significantly improved by learning `fashion aware' image representations directly, i.e., by training the image representation (from the pixel level) and the recommender system jointly; this contribution is related to recent work using Siamese CNNs, though we are able to show improvements over state-of-the-art recommendation techniques such as BPR and variants that make use of pre-trained visual features. Furthermore, we show that our model can be used \emph{generatively}, i.e., given a user and a product category, we can generate new images (i.e., clothing items) that are most consistent with their personal taste. This represents a first step towards building systems that go beyond recommending existing items from a product corpus, but which can be used to suggest styles and aid the design of new products.Comment: 10 pages, 6 figures. Accepted by ICDM'17 as a long pape

    Generative Latent Flow

    Full text link
    In this work, we propose the Generative Latent Flow (GLF), an algorithm for generative modeling of the data distribution. GLF uses an Auto-encoder (AE) to learn latent representations of the data, and a normalizing flow to map the distribution of the latent variables to that of simple i.i.d noise. In contrast to some other Auto-encoder based generative models, which use various regularizers that encourage the encoded latent distribution to match the prior distribution, our model explicitly constructs a mapping between these two distributions, leading to better density matching while avoiding over regularizing the latent variables. We compare our model with several related techniques, and show that it has many relative advantages including fast convergence, single stage training and minimal reconstruction trade-off. We also study the relationship between our model and its stochastic counterpart, and show that our model can be viewed as a vanishing noise limit of VAEs with flow prior. Quantitatively, under standardized evaluations, our method achieves state-of-the-art sample quality among AE based models on commonly used datasets, and is competitive with GANs' benchmarks

    Large Scale GAN Training for High Fidelity Natural Image Synthesis

    Full text link
    Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Frechet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.6

    Safer Classification by Synthesis

    Full text link
    The discriminative approach to classification using deep neural networks has become the de-facto standard in various fields. Complementing recent reservations about safety against adversarial examples, we show that conventional discriminative methods can easily be fooled to provide incorrect labels with very high confidence to out of distribution examples. We posit that a generative approach is the natural remedy for this problem, and propose a method for classification using generative models. At training time, we learn a generative model for each class, while at test time, given an example to classify, we query each generator for its most similar generation, and select the class corresponding to the most similar one. Our approach is general and can be used with expressive models such as GANs and VAEs. At test time, our method accurately "knows when it does not know," and provides resilience to out of distribution examples while maintaining competitive performance for standard examples

    Learning Pose Specific Representations by Predicting Different Views

    Full text link
    The labeled data required to learn pose estimation for articulated objects is difficult to provide in the desired quantity, realism, density, and accuracy. To address this issue, we develop a method to learn representations, which are very specific for articulated poses, without the need for labeled training data. We exploit the observation that the object pose of a known object is predictive for the appearance in any known view. That is, given only the pose and shape parameters of a hand, the hand's appearance from any viewpoint can be approximated. To exploit this observation, we train a model that -- given input from one view -- estimates a latent representation, which is trained to be predictive for the appearance of the object when captured from another viewpoint. Thus, the only necessary supervision is the second view. The training process of this model reveals an implicit pose representation in the latent space. Importantly, at test time the pose representation can be inferred using only a single view. In qualitative and quantitative experiments we show that the learned representations capture detailed pose information. Moreover, when training the proposed method jointly with labeled and unlabeled data, it consistently surpasses the performance of its fully supervised counterpart, while reducing the amount of needed labeled samples by at least one order of magnitude.Comment: CVPR 2018 (Spotlight); Project Page at https://poier.github.io/PreView

    Pros and Cons of GAN Evaluation Measures

    Full text link
    Generative models, in particular generative adversarial networks (GANs), have received significant attention recently. A number of GAN variants have been proposed and have been utilized in many applications. Despite large strides in terms of theoretical progress, evaluating and comparing GANs remains a daunting task. While several measures have been introduced, as of yet, there is no consensus as to which measure best captures strengths and limitations of models and should be used for fair model comparison. As in other areas of computer vision and machine learning, it is critical to settle on one or few good measures to steer the progress in this field. In this paper, I review and critically discuss more than 24 quantitative and 5 qualitative measures for evaluating generative models with a particular emphasis on GAN-derived models. I also provide a set of 7 desiderata followed by an evaluation of whether a given measure or a family of measures is compatible with them

    PixelNN: Example-based Image Synthesis

    Full text link
    We present a simple nearest-neighbor (NN) approach that synthesizes high-frequency photorealistic images from an "incomplete" signal such as a low-resolution image, a surface normal map, or edges. Current state-of-the-art deep generative models designed for such conditional image synthesis lack two important things: (1) they are unable to generate a large set of diverse outputs, due to the mode collapse problem. (2) they are not interpretable, making it difficult to control the synthesized output. We demonstrate that NN approaches potentially address such limitations, but suffer in accuracy on small datasets. We design a simple pipeline that combines the best of both worlds: the first stage uses a convolutional neural network (CNN) to maps the input to a (overly-smoothed) image, and the second stage uses a pixel-wise nearest neighbor method to map the smoothed output to multiple high-quality, high-frequency outputs in a controllable manner. We demonstrate our approach for various input modalities, and for various domains ranging from human faces to cats-and-dogs to shoes and handbags.Comment: Project Page: http://www.cs.cmu.edu/~aayushb/pixelNN

    Improved Precision and Recall Metric for Assessing Generative Models

    Full text link
    The ability to automatically estimate the quality and coverage of the samples produced by a generative model is a vital requirement for driving algorithm research. We present an evaluation metric that can separately and reliably measure both of these aspects in image generation tasks by forming explicit, non-parametric representations of the manifolds of real and generated data. We demonstrate the effectiveness of our metric in StyleGAN and BigGAN by providing several illustrative examples where existing metrics yield uninformative or contradictory results. Furthermore, we analyze multiple design variants of StyleGAN to better understand the relationships between the model architecture, training methods, and the properties of the resulting sample distribution. In the process, we identify new variants that improve the state-of-the-art. We also perform the first principled analysis of truncation methods and identify an improved method. Finally, we extend our metric to estimate the perceptual quality of individual samples, and use this to study latent space interpolations.Comment: NeurIPS 2019 final versio
    corecore