2,883 research outputs found

    Characterization of the T cell receptor repertoire causing collagen arthritis in mice

    Get PDF
    Collagen type II-induced arthritis (CIA) is generated in susceptible rodent strains by intradermal injections of homologous or heterologous native type II collagen in complete Freund's adjuvant. Symptoms of CIA are analogous to those of the human autoimmune disease, rheumatoid arthritis. CIA is a model system for T cell-mediated autoimmune disease. To study the T cell receptor (TCR) repertoire of bovine type II-specific T cells that may be involved in the pathogenesis of CIA in DBA/1Lac.J (H-2q) mice, 13 clonally distinct T cell hybridomas specific for bovine type II collagen have been established and the alpha and beta chains of their TCRs have been analyzed. These T cell hybridomas recognize epitopes that are shared by type II collagens from distinct species and not by type I collagens, and exhibit a highly restricted TCR-alpha/beta repertoire. The alpha chains of the TCRs employ three V alpha gene subfamilies (V alpha 11, V alpha 8, and V alpha 22) and four J alpha gene segments (J alpha 42, J alpha 24, J alpha 37, and J alpha 32). The V alpha 22 is a newly identified subfamily consisting of approximately four to six members, and exhibits a high degree of polymorphism among four mouse strains of distinct V alpha haplotypes. In addition, the beta chains of the TCRs employ three V beta gene subfamilies (V beta 8, V beta 1, and V beta 6), however the V beta 8.2 gene segment is preferentially utilized (58.3%). In contrast, the J beta gene segment usage is more heterogeneous. On the basis of the highly limited TCR-alpha/beta repertoire of the TCRs of the panel of bovine type II-specific T cell hybrid clones, a significant reduction (60%) of the incidence of arthritis in DBA/1Lac.J mice is accomplished by the use of anti-V beta 8.2 antibody therapy

    Elementary immunology

    Get PDF

    Structure and specificity of T cell receptor gamma/delta on major histocompatibility complex antigen-specific CD3+, CD4-, CD8- T lymphocytes.

    Get PDF
    Analyses of TCR-bearing murine and human T cells have defined a unique subpopulation of T cells that express the TCR-gamma/delta proteins. The specificity of TCR-gamma/delta T cells and their role in the immune response have not yet been elucidated. Here we examine alloreactive TCR-gamma/delta T cell lines and clones that recognize MHC-encoded antigens. A BALB/c nu/nu (H-2d)-derived H-2k specific T cell line and derived clones were both cytolytic and released lymphokines after recognition of a non-classical H-2 antigen encoded in the TL region of the MHC. These cells expressed the V gamma 2/C gamma 1 protein in association with a TCR-delta gene product encoded by a Va gene segment rearranged to two D delta and one J delta variable elements. A second MHC-specific B10 nu/nu (H-2b) TCR-gamma/delta T cell line appeared to recognize a classical H-2D-encoded MHC molecule and expressed a distinct V gamma/C gamma 4-encoded protein. These data suggest that many TCR-gamma/delta-expressing T cells may recognize MHC-linked antigens encoded within distinct subregions of the MHC. The role of MHC-specific TCR-gamma/delta cells in immune responses and their immunological significance are discussed

    Evolution of antigen binding receptors

    Get PDF
    This review addresses issues related to the evolution of the complex multigene families of antigen binding receptors that function in adaptive immunity. Advances in molecular genetic technology now permit the study of immunoglobulin (Ig) and T cell receptor (TCR) genes in many species that are not commonly studied yet represent critical branch points in vertebrate phylogeny. Both Ig and TCR genes have been defined in most of the major lineages of jawed vertebrates, including the cartilaginous fishes, which represent the most phylogenetically divergent jawed vertebrate group relative to the mammals. Ig genes in cartilaginous fish are encoded by multiple individual loci that each contain rearranging segmental elements and constant regions. In some loci, segmental elements are joined in the germline, i.e. they do not undergo genetic rearrangement. Other major differences in Ig gene organization and the mechanisms of somatic diversification have occurred throughout vertebrate evolution. However, relating these changes to adaptive immune function in lower vertebrates is challenging. TCR genes exhibit greater sequence diversity in individual segmental elements than is found in Ig genes but have undergone fewer changes in gene organization, isotype diversity, and mechanisms of diversification. As of yet, homologous forms of antigen binding receptors have not been identified in jawless vertebrates; however, acquisition of large amounts of structural data for the antigen binding receptors that are found in a variety of jawed vertebrates has defined shared characteristics that provide unique insight into the distant origins of the rearranging gene systems and their relationships to both adaptive and innate recognition processes

    High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities.

    Get PDF
    T-cell specificity is determined by the T-cell receptor, a heterodimeric protein coded for by an extremely diverse set of genes produced by imprecise somatic gene recombination. Massively parallel high-throughput sequencing allows millions of different T-cell receptor genes to be characterized from a single sample of blood or tissue. However, the extraordinary heterogeneity of the immune repertoire poses significant challenges for subsequent analysis of the data. We outline the major steps in processing of repertoire data, considering low-level processing of raw sequence files and high-level algorithms, which seek to extract biological or pathological information. The latest generation of bioinformatics tools allows millions of DNA sequences to be accurately and rapidly assigned to their respective variable V and J gene segments, and to reconstruct an almost error-free representation of the non-templated additions and deletions that occur. High-level processing can measure the diversity of the repertoire in different samples, quantify V and J usage and identify private and public T-cell receptors. Finally, we discuss the major challenge of linking T-cell receptor sequence to function, and specifically to antigen recognition. Sophisticated machine learning algorithms are being developed that can combine the paradoxical degeneracy and cross-reactivity of individual T-cell receptors with the specificity of the overall T-cell immune response. Computational analysis will provide the key to unlock the potential of the T-cell receptor repertoire to give insight into the fundamental biology of the adaptive immune system and to provide powerful biomarkers of disease

    A clonotype nomenclature for T cell receptors

    Get PDF

    Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar

    Get PDF
    BioMed CentralBackground: The Atlantic salmon (Salmo salar) immunoglobulin heavy chain (IgH) locus possesses two parallel IgH isoloci (IGH-A and IGH-B), that are related to the genomic duplication event in the family Salmonidae. These duplicated IgH loci in Atlantic salmon provide a unique opportunity to examine the mechanisms of genome diversity and genome evolution of the IgH loci in vertebrates. In this study, we defined the structure of these loci in Atlantic salmon, and sequenced 24 bacterial artificial chromosome (BAC) clones that were assembled into the IGH-A (1.1 Mb) and IGH-B (0.9 Mb) loci. In addition, over 7,000 cDNA clones from the IgH variable (VH) region have been sequenced and analyzed. Results: The present study shows that the genomic organization of the duplicated IgH loci in Atlantic salmon differs from that in other teleosts and other vertebrates. The loci possess multiple Cτ genes upstream of the Cμ region, with three of the Cτ genes being functional. Moreover, the duplicated loci possess over 300 VH segments which could be classified into 18 families. This is the largest number of VH families currently defined in any vertebrate. There were significant structural differences between the two loci, indicating that both IGH-A and -B loci have evolved independently in the short time after the recent genome duplication approximately 60 mya. Conclusions: Our results indicate that the duplication of the IgH loci in Atlantic salmon significantly contributes to the increased diversity of the antibody repertoire, as compared with the single IgH locus in other vertebrates.This work was supported by Genome Canada, Genome BC and by the Natural Sciences and Engineering Research Council of Canada (B.K., W.D).FacultyReviewe

    Quantification of total T-cell receptor diversity by flow cytometry and spectratyping

    Get PDF
    BACKGROUND: T-cell receptor diversity correlates with immune competency and is of particular interest in patients undergoing immune reconstitution. Spectratyping generates data about T-cell receptor CDR3 length distribution for each BV gene but is technically complex. Flow cytometry can also be used to generate data about T-cell receptor BV gene usage, but its utility has not been compared to or tested in combination with spectratyping. RESULTS: Using flow cytometry and spectratype data, we have defined a divergence metric that quantifies the deviation from normal of T-cell receptor repertoire. We have shown that the sample size is a sensitive parameter in the predicted flow divergence values, but not in the spectratype divergence values. We have derived two ways to correct for the measurement bias using mathematical and statistical approaches and have predicted a lower bound in the number of lymphocytes needed when using the divergence as a substitute for diversity. CONCLUSIONS: Using both flow cytometry and spectratyping of T-cells, we have defined the divergence measure as an indirect measure of T-cell receptor diversity. We have shown the dependence of the divergence measure on the sample size before it can be used to make predictions regarding the diversity of the T-cell receptor repertoire
    corecore