1,302 research outputs found

    Performance Analysis of a 5G Transceiver Implementation for Remote Areas Scenarios

    Full text link
    The fifth generation of mobile communication networks will support a large set of new services and applications. One important use case is the remote area coverage for broadband Internet access. This use case ha significant social and economic impact, since a considerable percentage of the global population living in low populated area does not have Internet access and the communication infrastructure in rural areas can be used to improve agribusiness productivity. The aim of this paper is to analyze the performance of a 5G for Remote Areas transceiver, implemented on field programmable gate array based hardware for real-time processing. This transceiver employs the latest digital communication techniques, such as generalized frequency division multiplexing waveform combined with 2 by 2 multiple-input multiple-output diversity scheme and polar channel coding. The performance of the prototype is evaluated regarding its out-of-band emissions and bit error rate under AWGN channel.Comment: Presented in 2018 European Conference on Networks and Communications (EuCNC),18-21 June, 2018, Ljubljana, Sloveni

    Maximum Euclidean distance network coded modulation for asymmetric decode-and-forward two-way relaying

    No full text
    Network coding (NC) compresses two traffic flows with the aid of low-complexity algebraic operations, hence holds the potential of significantly improving both the efficiency of wireless two-way relaying, where each receiver is collocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. In this contribution, network coded modulation (NCM) is proposed for jointly performing NC and modulation. As in classic coded modulation, the Euclidean distance between the symbols is maximised, hence the symbol error probability is minimised. Specifically, the authors first propose set-partitioning-based NCM as an universal concept which can be combined with arbitrary constellations. Then the authors conceive practical phase-shift keying/quadrature amplitude modulation (PSK/QAM) NCM schemes, referred to as network coded PSK/QAM, based on modulo addition of the normalised phase/amplitude. To achieve a spatial diversity gain at a low complexity, a NC oriented maximum ratio combining scheme is proposed for combining the network coded signal and the original signal of the source. An adaptive NCM is also proposed to maximise the throughput while guaranteeing a target bit error probability (BEP). Both theoretical performance analysis and simulations demonstrate that the proposed NCM can achieve at least 3 dB signal-to-noise ratio gain and two times diversity gain

    Capacity of a Nonlinear Optical Channel with Finite Memory

    Get PDF
    The channel capacity of a nonlinear, dispersive fiber-optic link is revisited. To this end, the popular Gaussian noise (GN) model is extended with a parameter to account for the finite memory of realistic fiber channels. This finite-memory model is harder to analyze mathematically but, in contrast to previous models, it is valid also for nonstationary or heavy-tailed input signals. For uncoded transmission and standard modulation formats, the new model gives the same results as the regular GN model when the memory of the channel is about 10 symbols or more. These results confirm previous results that the GN model is accurate for uncoded transmission. However, when coding is considered, the results obtained using the finite-memory model are very different from those obtained by previous models, even when the channel memory is large. In particular, the peaky behavior of the channel capacity, which has been reported for numerous nonlinear channel models, appears to be an artifact of applying models derived for independent input in a coded (i.e., dependent) scenario

    Punctured Trellis-Coded Modulation

    Full text link
    In classic trellis-coded modulation (TCM) signal constellations of twice the cardinality are applied when compared to an uncoded transmission enabling transmission of one bit of redundancy per PAM-symbol, i.e., rates of KK+1\frac{K}{K+1} when 2K+12^{K+1} denotes the cardinality of the signal constellation. In order to support different rates, multi-dimensional (i.e., D\mathcal{D}-dimensional) constellations had been proposed by means of combining subsequent one- or two-dimensional modulation steps, resulting in TCM-schemes with 1D\frac{1}{\mathcal{D}} bit redundancy per real dimension. In contrast, in this paper we propose to perform rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM-scheme is based on. It is shown, that due to the nontrivial mapping of the output symbols of the CC to signal points in the case of puncturing, a modification of the corresponding Viterbi-decoder algorithm and an optimization of the CC and the puncturing scheme are necessary.Comment: 5 pages, 10 figures, submitted to IEEE International Symposium on Information Theory 2013 (ISIT
    • 

    corecore