18 research outputs found

    Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

    Full text link
    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Graph Embedding via High Dimensional Model Representation for Hyperspectral Images

    Full text link
    Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes, as well as to encapsulate the high dimensionality in a reduced set of informative features for subsequent classification, regression, or unmixing. Manifold learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to project out-of-sample samples into the latent space. The proposed method is compared to manifold learning methods along with its linear counterparts and achieves promising performance in terms of classification accuracy of a representative set of hyperspectral images.Comment: This is an accepted version of work to be published in the IEEE Transactions on Geoscience and Remote Sensing. 11 page

    Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval

    Full text link
    [EN] As remote sensing (RS) images increase dramatically, the demand for remote sensing image retrieval (RSIR) is growing, and has received more and more attention. The characteristics of RS images, e.g., large volume, diversity and high complexity, make RSIR more challenging in terms of speed and accuracy. To reduce the retrieval complexity of RSIR, a hashing technique has been widely used for RSIR, mapping high-dimensional data into a low-dimensional Hamming space while preserving the similarity structure of data. In order to improve hashing performance, we propose a new hash learning method, named low-rank hypergraph hashing (LHH), to accomplish for the large-scale RSIR task. First, LHH employs a l(2-1) norm to constrain the projection matrix to reduce the noise and redundancy among features. In addition, low-rankness is also imposed on the projection matrix to exploit its global structure. Second, LHH uses hypergraphs to capture the high-order relationship among data, and is very suitable to explore the complex structure of RS images. Finally, an iterative algorithm is developed to generate high-quality hash codes and efficiently solve the proposed optimization problem with a theoretical convergence guarantee. Extensive experiments are conducted on three RS image datasets and one natural image dataset that are publicly available. The experimental results demonstrate that the proposed LHH outperforms the existing hashing learning in RSIR tasks.This research was supported in part by the Natural Science Foundation of China under Grant 61673220.Kong, J.; Sun, Q.; Mukherjee, M.; Lloret, J. (2020). Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval. Remote Sensing. 12(7):1-19. https://doi.org/10.3390/rs1207116411912

    Sketch-based subspace clustering of hyperspectral images

    Get PDF
    Sparse subspace clustering (SSC) techniques provide the state-of-the-art in clustering of hyperspectral images (HSIs). However, their computational complexity hinders their applicability to large-scale HSIs. In this paper, we propose a large-scale SSC-based method, which can effectively process large HSIs while also achieving improved clustering accuracy compared to the current SSC methods. We build our approach based on an emerging concept of sketched subspace clustering, which was to our knowledge not explored at all in hyperspectral imaging yet. Moreover, there are only scarce results on any large-scale SSC approaches for HSI. We show that a direct application of sketched SSC does not provide a satisfactory performance on HSIs but it does provide an excellent basis for an effective and elegant method that we build by extending this approach with a spatial prior and deriving the corresponding solver. In particular, a random matrix constructed by the Johnson-Lindenstrauss transform is first used to sketch the self-representation dictionary as a compact dictionary, which significantly reduces the number of sparse coefficients to be solved, thereby reducing the overall complexity. In order to alleviate the effect of noise and within-class spectral variations of HSIs, we employ a total variation constraint on the coefficient matrix, which accounts for the spatial dependencies among the neighbouring pixels. We derive an efficient solver for the resulting optimization problem, and we theoretically prove its convergence property under mild conditions. The experimental results on real HSIs show a notable improvement in comparison with the traditional SSC-based methods and the state-of-the-art methods for clustering of large-scale images

    SpaSSA: superpixelwise adaptive SSA for unsupervised spatial-spectral feature extraction in hyperspectral image.

    Get PDF
    Singular spectral analysis (SSA) has recently been successfully applied to feature extraction in hyperspectral image (HSI), including conventional (1-D) SSA in spectral domain and 2-D SSA in spatial domain. However, there are some drawbacks, such as sensitivity to the window size, high computational complexity under a large window, and failing to extract joint spectral-spatial features. To tackle these issues, in this article, we propose superpixelwise adaptive SSA (SpaSSA), that is superpixelwise adaptive SSA for exploiting local spatial information of HSI. The extraction of local (instead of global) features, particularly in HSI, can be more effective for characterizing the objects within an image. In SpaSSA, conventional SSA and 2-D SSA are combined and adaptively applied to each superpixel derived from an oversegmented HSI. According to the size of the derived superpixels, either SSA or 2-D singular spectrum analysis (2D-SSA) is adaptively applied for feature extraction, where the embedding window in 2D-SSA is also adaptive to the size of the superpixel. Experimental results on the three datasets have shown that the proposed SpaSSA outperforms both SSA and 2D-SSA in terms of classification accuracy and computational complexity. By combining SpaSSA with the principal component analysis (SpaSSA-PCA), the accuracy of land-cover analysis can be further improved, outperforming several state-of-the-art approaches

    PSSA: PCA-domain superpixelwise singular spectral analysis for unsupervised hyperspectral image classification.

    Get PDF
    Although supervised classification of hyperspectral images (HSI) has achieved success in remote sensing, its applications in real scenarios are often constrained, mainly due to the insufficiently available or lack of labelled data. As a result, unsupervised HSI classification based on data clustering is highly desired, yet it generally suffers from high computational cost and low classification accuracy, especially in large datasets. To tackle these challenges, a novel unsupervised spatial-spectral HSI classification method is proposed. By combining the entropy rate superpixel segmentation (ERS), superpixel-based principal component analysis (PCA), and PCA-domain 2D singular spectral analysis (SSA), both the efficacy and efficiency of feature extraction are improved, followed by the anchor-based graph clustering (AGC) for effective classification. Experiments on three publicly available and five self-collected aerial HSI datasets have fully demonstrated the efficacy of the proposed PCA-domain superpixelwise SSA (PSSA) method, with a gain of 15–20% in terms of the overall accuracy, in comparison to a few state-of-the-art methods. In addition, as an extra outcome, the HSI dataset we acquired is provided freely online

    Improved K-means clustering algorithms : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, New Zealand

    Get PDF
    K-means clustering algorithm is designed to divide the samples into subsets with the goal that maximizes the intra-subset similarity and inter-subset dissimilarity where the similarity measures the relationship between two samples. As an unsupervised learning technique, K-means clustering algorithm is considered one of the most used clustering algorithms and has been applied in a variety of areas such as artificial intelligence, data mining, biology, psychology, marketing, medicine, etc. K-means clustering algorithm is not robust and its clustering result depends on the initialization, the similarity measure, and the predefined cluster number. Previous research focused on solving a part of these issues but has not focused on solving them in a unified framework. However, fixing one of these issues does not guarantee the best performance. To improve K-means clustering algorithm, one of the most famous and widely used clustering algorithms, by solving its issues simultaneously is challenging and significant. This thesis conducts an extensive research on K-means clustering algorithm aiming to improve it. First, we propose the Initialization-Similarity (IS) clustering algorithm to solve the issues of the initialization and the similarity measure of K-means clustering algorithm in a unified way. Specifically, we propose to fix the initialization of the clustering by using sum-of-norms (SON) which outputs the new representation of the original samples and to learn the similarity matrix based on the data distribution. Furthermore, the derived new representation is used to conduct K-means clustering. Second, we propose a Joint Feature Selection with Dynamic Spectral (FSDS) clustering algorithm to solve the issues of the cluster number determination, the similarity measure, and the robustness of the clustering by selecting effective features and reducing the influence of outliers simultaneously. Specifically, we propose to learn the similarity matrix based on the data distribution as well as adding the ranked constraint on the Laplacian matrix of the learned similarity matrix to automatically output the cluster number. Furthermore, the proposed algorithm employs the L2,1-norm as the sparse constraints on the regularization term and the loss function to remove the redundant features and reduce the influence of outliers respectively. Third, we propose a Joint Robust Multi-view (JRM) spectral clustering algorithm that conducts clustering for multi-view data while solving the initialization issue, the cluster number determination, the similarity measure learning, the removal of the redundant features, and the reduction of outlier influence in a unified way. Finally, the proposed algorithms outperformed the state-of-the-art clustering algorithms on real data sets. Moreover, we theoretically prove the convergences of the proposed optimization methods for the proposed objective functions
    corecore