2,198 research outputs found

    Methods for fast and reliable clustering

    Get PDF

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Singing speaker clustering based on subspace learning in the GMM mean supervector space

    Get PDF
    Abstract In this study, we propose algorithms based on subspace learning in the GMM mean supervector space to improve performance of speaker clustering with speech from both reading and singing. As a speaking style, singing introduces changes in the time-frequency structure of a speaker's voice. The purpose of this study is to introduce advancements for speech systems such as speech indexing and retrieval which improve robustness to intrinsic variations in speech production. Speaker clustering techniques such as k-means and hierarchical are explored for analysis of acoustic space differences of a corpus consisting of reading and singing of lyrics for each speaker. Furthermore, a distance based on fuzzy c-means membership degrees is proposed to more accurately measure clustering difficulty or speaker confusability. Two categories of subspace learning methods are studied: unsupervised based on LPP, and supervised based on PLDA. Our proposed clustering method based on PLDA is a two stage algorithm: where first, initial clusters are obtained using full dimension supervectors, and next, each cluster is refined in a PLDA subspace resulting in a more speaker dependent representation that is less sensitive to speaking style. It is shown that LPP improves average clustering accuracy by 5.1% absolute versus a hierarchical baseline for a mixture of reading and singing, and PLDA based clustering increases accuracy by 9.6% absolute versus a k-means baseline. The advancements offer novel techniques to improve model formulation for speech applications including speaker ID, audio search, and audio content analysis
    corecore