13,082 research outputs found
Recommended from our members
Noggin depletion in adipocytes promotes obesity in mice.
ObjectiveObesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis.MethodsWe generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency.ResultsOur studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice.ConclusionsBMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity
Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists.
UnlabelledAlthough adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP-Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics.SignificanceAlthough stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell-based therapy for treating bone defects that can effectively complement or replace current osteoinductive therapeutics
A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling
In this study, we investigated a clinically relevant model of in vivo ectopic bone formation utilizing human periosteum derived cells (HPDCs) seeded in a Collagraft carrier and explored the mechanisms by which this process is driven. Bone formation occurred after eight weeks when a minimum of one million HPDCs was loaded on Collagraft carriers and implanted subcutaneously in NMRI nu/nu mice. De novo bone matrix, mainly secreted by the HPDCs, was found juxta-proximal of the calcium phosphate (CaP) granules suggesting that CaP may have triggered the 'osteoinductive program'. Indeed, removal of the CaP granules by ethylenediaminetetraacetic acid decalcification prior to cell seeding and implantation resulted in loss of bone formation. In addition, inhibition of endogenous bone morphogenetic protein and Wnt signalling by overexpression of the secreted antagonists Noggin and Frzb, respectively, also abrogated osteoinduction. Proliferation of the engrafted HPDCs was strongly reduced in the decalcified scaffolds or when seeded with adenovirus-Noggin/Frzb transduced HPDCs indicating that cell division of the engrafted HPDCs is required for the direct bone formation cascade. These data suggest that this model of bone formation is similar to that observed during physiological intramembranous bone development and may be of importance when investigating tissue engineering strategies.Published versio
XASH genes promote neurogenesis in Xenopus embryos
Neural development in Drosophila is promoted by a family of basic helix-loop-helix (bHLH) transcription factors encoded within the Achaete Scute-Complex (AS-C). XASH-
3, a Xenopus homolog of the Drosophila AS-C genes, is expressed during neural induction within a portion of the dorsal ectoderm that gives rise to the neural plate and tube. Here, we show that XASH-3, when expressed with the promiscuous binding partner XE12, specifically activates the expression of neural genes in naive ectoderm, suggesting
that XASH-3 promotes neural development. Moreover, XASH-3/XE12 RNA injections into embryos lead to hypertrophy of the neural tube. Interestingly, XASH-3 misexpression
does not lead to the formation of ectopic neural tissue in ventral regions, suggesting that the domain of XASH proneural function is restricted in the embryo. In contrast to the neural inducer noggin, which permanently activates the NCAM gene, the activation of neural genes by XASH-3/XE12 is not stable in naive ectoderm, yet XASH-3/XE12 powerfully and stably activates NCAM, Neurofilament and type III β-tubulin gene expression in noggintreated ectoderm. These results show that the XASH-3 promotes neural development, and suggest that its activity depends on additional factors which are induced in ectoderm by factors such as noggin
Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence
Although BMP4-induced differentiation of glioma stem cells (GSCs) is well recognized, details of the cellular responses triggered by this morphogen are still poorly defined. In this study, we established several GSC-enriched cell lines (GSC-ECLs) from high-grade gliomas. The expansion of these cells as adherent monolayers, and not as floating neurospheres, enabled a thorough study of the phenotypic changes that occurred during their differentiation. Herein, we evaluated GSC-ECLs' behavior toward differentiating conditions by depriving them of growth factors and/or by adding BMP4 at different concentrations. After analyzing cellular morphology, proliferation and lineage marker expression, we determined that GSC-ECLs have distinct preferences in lineage choice, where some of them showed an astrocyte fate commitment and others a neuronal one. We found that this election seems to be dictated by the expression pattern of BMP signaling components present in each GSC-ECL. Additionally, treatment of GSC-ECLs with the BMP antagonist, Noggin, also led to evident phenotypic changes. Interestingly, under certain conditions, some GSC-ECLs adopted an unexpected smooth muscle-like phenotype. As a whole, our findings illustrate the wide differentiation potential of GSCs, highlighting their molecular complexity and paving a way to facilitate personalized differentiating therapies.Fil: Videla Richardson, Guillermo Agustín. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Garcia, Carolina Paola. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Roisman, Alejandro. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Slavutsky, Irma Rosa. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Fernandez Espinosa, Damian Dario. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Romorini, Leonardo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Miriuka, Santiago Gabriel. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Arakaki, Naomi. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Martinetto, Horacio Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Scassa, Maria Elida. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Sevlever, Gustavo Emilio. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentin
Recommended from our members
The TGFβ type I receptor TGFβRI functions as an inhibitor of BMP signaling in cartilage.
The type I TGFβ receptor TGFβRI (encoded by Tgfbr1) was ablated in cartilage. The resulting Tgfbr1 Col2 mice exhibited lethal chondrodysplasia. Similar defects were not seen in mice lacking the type II TGFβ receptor or SMADs 2 and 3, the intracellular mediators of canonical TGFβ signaling. However, we detected elevated BMP activity in Tgfbr1 Col2 mice. As previous studies showed that TGFβRI can physically interact with ACVRL1, a type I BMP receptor, we generated cartilage-specific Acvrl1 (Acvrl1 Col2 ) and Acvrl1/Tgfbr1 (Acvrl1/Tgfbr1 Col2 ) knockouts. Loss of ACVRL1 alone had no effect, but Acvrl1/Tgfbr1 Col2 mice exhibited a striking reversal of the chondrodysplasia seen in Tgfbr1 Col2 mice. Loss of TGFβRI led to a redistribution of the type II receptor ACTRIIB into ACVRL1/ACTRIIB complexes, which have high affinity for BMP9. Although BMP9 is not produced in cartilage, we detected BMP9 in the growth plate, most likely derived from the circulation. These findings demonstrate that the major function of TGFβRI in cartilage is not to transduce TGFβ signaling, but rather to antagonize BMP signaling mediated by ACVRL1
Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells
Peer reviewedPublisher PD
Stable expansion of high-grade serous ovarian cancer organoids requires a low-Wnt environment
Early Acquisition of Neural Crest Competence During hESCs Neuralization
Background:
Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels.
Methodology/Principal Findings:
We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k- mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos.
Conclusions/Significance:
These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination
- …
