77,712 research outputs found
Observation-based Cooperation Enforcement in Ad Hoc Networks
Ad hoc networks rely on the cooperation of the nodes participating in the
network to forward packets for each other. A node may decide not to cooperate
to save its resources while still using the network to relay its traffic. If
too many nodes exhibit this behavior, network performance degrades and
cooperating nodes may find themselves unfairly loaded. Most previous efforts to
counter this behavior have relied on further cooperation between nodes to
exchange reputation information about other nodes. If a node observes another
node not participating correctly, it reports this observation to other nodes
who then take action to avoid being affected and potentially punish the bad
node by refusing to forward its traffic. Unfortunately, such second-hand
reputation information is subject to false accusations and requires maintaining
trust relationships with other nodes. The objective of OCEAN is to avoid this
trust-management machinery and see how far we can get simply by using direct
first-hand observations of other nodes' behavior. We find that, in many
scenarios, OCEAN can do as well as, or even better than, schemes requiring
second-hand reputation exchanges. This encouraging result could possibly help
obviate solutions requiring trust-management for some contexts.Comment: 10 pages, 7 figure
Design & Evaluation of Path-based Reputation System for MANET Routing
Most of the existing reputation systems in mobile ad hoc networks (MANET) consider only node reputations when selecting routes. Reputation and trust are therefore generally ensured within a one-hop distance when routing decisions are made, which often fail to provide the most reliable, trusted route. In this report, we first summarize the background studies on the security of MANET. Then, we propose a system that is based on path reputation, which is computed from reputation and trust values of each and every node in the route. The use of path reputation greatly enhances the reliability of resulting routes. The detailed system architecture and components design of the proposed mechanism are carefully described on top of the AODV (Ad-hoc On-demand Distance Vector) routing protocol. We also evaluate the performance of the proposed system by simulating it on top of AODV. Simulation experiments show that the proposed scheme greatly improves network throughput in the midst of misbehavior nodes while requires very limited message overhead. To our knowledge, this is the first path-based reputation system proposal that may be implemented on top of a non-source based routing scheme such as AODV
DARE: evaluating Data Accuracy using node REputation
Typical wireless sensor networks (WSNs) applications are characterized by a certain number of different requirements such as: data accuracy, localization, reputation, security, and confidentiality. Moreover, being often battery powered, WSNs face the challenge of ensuring privacy and security despite power consumption limitations. When the application scenario allows their use, data aggregation techniques can significantly reduce the amount of data exchanged over the wireless link at the price of an increased computational complexity and the potential exposition to data integrity risks in the presence of malicious nodes. In this paper, we propose DARE, an hybrid architecture combining WSNs with the wireless mesh networking paradigm in order to provide secure data aggregation and node reputation in WSNs. Finally, the use of a secure verifiable multilateration technique allows the network to retain the trustworthiness of aggregated data even in the presence of malicious node. Extensive performance evaluations carried out using simulations as well as a real-world prototype implementation, show that DARE can effectively reduce the amount of data exchanged over the wireless medium delivering up to 50% battery lifetime improvement to the wireless sensors
- …
