255,324 research outputs found

    WESPE: Weakly Supervised Photo Enhancer for Digital Cameras

    Full text link
    Low-end and compact mobile cameras demonstrate limited photo quality mainly due to space, hardware and budget constraints. In this work, we propose a deep learning solution that translates photos taken by cameras with limited capabilities into DSLR-quality photos automatically. We tackle this problem by introducing a weakly supervised photo enhancer (WESPE) - a novel image-to-image Generative Adversarial Network-based architecture. The proposed model is trained by under weak supervision: unlike previous works, there is no need for strong supervision in the form of a large annotated dataset of aligned original/enhanced photo pairs. The sole requirement is two distinct datasets: one from the source camera, and one composed of arbitrary high-quality images that can be generally crawled from the Internet - the visual content they exhibit may be unrelated. Hence, our solution is repeatable for any camera: collecting the data and training can be achieved in a couple of hours. In this work, we emphasize on extensive evaluation of obtained results. Besides standard objective metrics and subjective user study, we train a virtual rater in the form of a separate CNN that mimics human raters on Flickr data and use this network to get reference scores for both original and enhanced photos. Our experiments on the DPED, KITTI and Cityscapes datasets as well as pictures from several generations of smartphones demonstrate that WESPE produces comparable or improved qualitative results with state-of-the-art strongly supervised methods

    Learned Perceptual Image Enhancement

    Full text link
    Learning a typical image enhancement pipeline involves minimization of a loss function between enhanced and reference images. While L1 and L2 losses are perhaps the most widely used functions for this purpose, they do not necessarily lead to perceptually compelling results. In this paper, we show that adding a learned no-reference image quality metric to the loss can significantly improve enhancement operators. This metric is implemented using a CNN (convolutional neural network) trained on a large-scale dataset labelled with aesthetic preferences of human raters. This loss allows us to conveniently perform back-propagation in our learning framework to simultaneously optimize for similarity to a given ground truth reference and perceptual quality. This perceptual loss is only used to train parameters of image processing operators, and does not impose any extra complexity at inference time. Our experiments demonstrate that this loss can be effective for tuning a variety of operators such as local tone mapping and dehazing

    The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

    Full text link
    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.Comment: Accepted to CVPR 2018; Code and data available at https://www.github.com/richzhang/PerceptualSimilarit
    • …
    corecore