1,155 research outputs found
On the accretion process in a high-mass star forming region - A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15
[Abridged] Our aim is to explore the gas dynamics and the accretion process
in the early phase of high-mass star formation. The inward motion of molecular
gas in the massive star forming region G34.26+0.15 is investigated by using
high-resolution profiles of seven transitions of ammonia at THz frequencies
observed with Herschel-HIFI. The shapes and intensities of these lines are
interpreted in terms of radiative transfer models of a spherical, collapsing
molecular envelope. An accelerated Lambda Iteration (ALI) method is used to
compute the models. The seven ammonia lines show mixed absorption and emission
with inverse P-Cygni-type profiles that suggest infall onto the central source.
A trend toward absorption at increasingly higher velocities for higher
excitation transitions is clearly seen in the line profiles. The lines show only very weak emission, so these absorption profiles
can be used directly to analyze the inward motion of the gas. This is the first
time a multitransitional study of spectrally resolved rotational ammonia lines
has been used for this purpose. Broad emission is, in addition, mixed with the
absorption in the ortho-NH line, possibly tracing a molecular
outflow from the star forming region. The best-fitting ALI model reproduces the
continuum fluxes and line profiles, but slightly underpredicts the emission and
absorption depth in the ground-state ortho line . The derived
ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core
similar to recent findings for translucent clouds in sight lines toward W31C
and W49N. We find evidence of two gas components moving inwards toward the
central region with constant velocities: 2.7 and 5.3 kms, relative
to the source systemic velocity. The inferred mass accretion rates derived are
sufficient to overcome the expected radiation pressure from G34.26+0.15.Comment: 20 pages, 18 figures, accepted by A&A 3 October 201
Species-Specific Differences in the Susceptibility of Fungi to the Antifungal Protein AFP Depend on C-3 Saturation of Glycosylceramides
AFP is an antimicrobial peptide (AMP) produced by the filamentous fungus Aspergillus giganteus and is a very potent inhibitor of fungal growth that does not affect the viability of bacteria, plant, or mammalian cells. It targets chitin synthesis and causes plasma membrane permeabilization in many human- and plant-pathogenic fungi, but its exact mode of action is not known. After adoption of the “damage-response framework of microbial pathogenesis” regarding the analysis of interactions between AMPs and microorganisms, we have recently proposed that the cytotoxic capacity of a given AMP depends not only on the presence/absence of its target(s) in the host and the AMP concentration applied but also on other variables, such as microbial survival strategies. We show here using the examples of three filamentous fungi (Aspergillus niger, Aspergillus fumigatus, and Fusarium graminearum) and two yeasts (Saccharomyces cerevisiae and Pichia pastoris) that the important parameters defining the AFP susceptibilities of these fungi are (i) the presence/absence of glycosylceramides, (ii) the presence/absence of Δ3(E) desaturation of the fatty acid chain therein, and (iii) the (dis)ability of these fungi to respond to AFP inhibitory effects with the fortification of their cell walls via increased chitin and β-(1,3)-glucan synthesis. These observations support the idea of the adoption of the damage-response framework to holistically understand the outcome of AFP inhibitory effects.TU Berlin, Open-Access-Mittel - 201
Competition alters plant species response to nickel and zinc
Phytoextraction can be a cost-efficient method for the remediation of contaminated soils. Using species mixtures instead of monocultures might improve this procedure. In a species mixture, an effect of heavy metals on the species' performance can be modified by the presence of a co-occuring species. We hypothesised that (a) a co-occuring species can change the effect of heavy metals on a target species, and (b) heavy metal application may modifiy the competitive behaviour between the plants. We investigated these mechanisms in a greenhouse experiment using three species to serve as a model system (Carex flava, Centaurea angustifolia and Salix caprea). The species were established in pots of monocultures and mixtures, which were exposed to increasing concentrations of Ni and Zn, ranging from 0 to 2,500mg/kg. Increased heavy metal application reduced the species' relative growth rate (RGR); the RGR reduction being generally correlated with Ni and Zn concentrations in plant tissue. S. caprea was an exception in that it showed considerable Zn uptake but only moderate growth reduction. In two out of six cases, competitors significantly modified the influence of heavy metals on a target species. The interaction can be explained by an increased uptake of Zn by one species (in this case S. caprea) that reduced the negative heavy metal effect on a target species (C. flava). In two further cases, increasing heavy metal application also altered competitive effects between the species. The mechanisms demonstrated in this experiment could be of relevance for the phytoextraction of heavy metals. The total uptake of metals might be maximised in specific mixtures, making phytoextraction more efficien
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center
Sinorhizobium meliloti was isolated from nodules and soil from western Tajikistan, a center of diversity of the host plants (Medicago, Melilotus, and Trigonella species). There was evidence of recombination, but significant disequilibrium, between and within the chromosome and megaplasmids. The most frequent alleles matched those in the published genome sequence
Recommended from our members
Inability of the brown citrus aphid (Toxoptera citricida) to transmit citrus psorosis virus under controlled conditions
Might Toxoptera citricida (BrCA) be a citrus psorosis virus (CPsV) vector? We examined CPsV transmission by the BrCA throughout two experiments. In experiment 1, 4 CPsV-infected plants bearing BrCA colonies were introduced in separated cages with 12 healthy 'Madame Vinous' sweet orange (MV) seedlings in each one (48 in total). In experiment 2, 5 BrCAs collected from each CPsV-infected plant were transferred into 3 MV seedlings for each one (12 in total) and left for a 72-h inoculation period. Both experiments were replicated once. No psorosis symptoms or CPsV detection evidences a BrCA inability for CPsV transmission under our controlled conditions.
Wayne E. Sabbe Arkansas Soil Fertility Studies 2017
Rapid technological changes in crop management and production require that the research efforts be presented in an expeditious manner. The contributions of soil fertility and fertilizers are major production factors in all Arkansas crops. The studies described within will allow producers to compare their practices with the university’s research efforts. Additionally, soil-test data and fertilizer sales are presented to allow comparisons among years, crops, and other areas within Arkansas
Elucidation of the transmission patterns of an insect-borne bacterium
Quantitative data on modes of transmission are a crucial element in understanding the ecology of microorganisms associated with animals. We investigated the transmission patterns of a -proteobacterium informally known as pea aphid Bemisia-like symbiont (PABS), also known as T-type, which is widely but not universally distributed in natural populations of the pea aphid, Acyrthosiphon pisum. The vertical transmission of PABS to asexual and sexual morphs and sexually produced eggs was demonstrated by a diagnostic PCR-based assay, and the maximum estimated failure rate was 2%. Aphids naturally lacking PABS acquired PABS bacteria administered via the diet, and the infection persisted by vertical transmission for at least three aphid generations. PABS was also detected in two of five aphid honeydew samples tested and in all five siphuncular fluid samples tested but in none of 15 samples of salivary secretions from PABS-positive aphids. However, PABSnegative aphids did not acquire PABS when they were cocultured with PABS-positive aphids; the maximal estimated level of horizontal transmission was 18%. A deterministic model indicated that the force of infection by a horizontal transmission rate of 3% is sufficient to maintain a previously described estimate of the prevalence of PABS-positive aphids (37%), if the vertical transmission rate is 98%. We concluded that PABS infections in A. pisum can be maintained by high vertical transmission rates and occasional horizontal transmission, possibly via the oral route, in the absence of selection either for or against aphids bearing this bacterium
The common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity
The nodulation genes of Mesorhizobium sp. (Astragalus sinicus) strain 7653R were cloned by functional complementation of Sinorhizobium meliloti nod mutants. The common nod genes, nodD, nodA, and nodBC, were identified by heterologous hybridization and sequence analysis. The nodA gene was found to be separated from nodBC by approximately 22 kb and was divergently transcribed. The 2.0-kb nodDBC region was amplified by PCR from 24 rhizobial strains nodulating A. sinicus, which represented different chromosomal genotypes and geographic origins. No polymorphism was found in the size of PCR products, suggesting that the separation of nodA from nodBC is a common feature of A. sinicus rhizobia. Sequence analysis of the PCR-amplified nodA gene indicated that seven strains representing different 16S and 23S ribosomal DNA genotypes had identical nodA sequences. These data indicate that, whereas microsymbionts of A. sinicus exhibit chromosomal diversity, their nodulation genes are conserved, supporting the hypothesis of horizontal transfer of nod genes among diverse recipient bacteria
Young starless cores embedded in the magnetically dominated Pipe Nebula. II. Extended dataset
The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a
low star-formation efficiency threaded by a uniform magnetic field
perpendicular to its main axis. It harbors more than a hundred, mostly
quiescent, very chemically young starless cores. The cloud is, therefore, a
good laboratory to study the earliest stages of the star-formation process. We
aim to investigate the primordial conditions and the relation among physical,
chemical, and magnetic properties in the evolution of low-mass starless cores.
We used the IRAM 30-m telescope to map the 1.2 mm dust continuum emission of
five new starless cores, which are in good agreement with previous visual
extinction maps. For the sample of nine cores, which includes the four cores
studied in a previous work, we derived a Av to NH2 factor of
(1.270.12) mag cm and a background visual extinction
of ~6.7 mag possibly arising from the cloud material. We derived an average
core diameter of ~0.08 pc, density of ~10 cm, and mass of ~1.7 Msun.
Several trends seem to exist related to increasing core density: (i) diameter
seems to shrink, (ii) mass seems to increase, and (iii) chemistry tends to be
richer. No correlation is found between the direction of the surrounding
diffuse medium magnetic field and the projected orientation of the cores,
suggesting that large scale magnetic fields seem to play a secondary role in
shaping the cores. The full abstract is available in the pdf.Comment: 19 pages, 12 figures, 13 tables, accepted for publication in Ap
Young starless cores embedded in the magnetically dominated Pipe Nebula
The Pipe Nebula is a massive, nearby dark molecular cloud with a low
star-formation efficiency which makes it a good laboratory to study the very
early stages of the star formation process. The Pipe Nebula is largely
filamentary, and appears to be threaded by a uniform magnetic field at scales
of few parsecs, perpendicular to its main axis. The field is only locally
perturbed in a few regions, such as the only active cluster forming core B59.
The aim of this study is to investigate primordial conditions in low-mass
pre-stellar cores and how they relate to the local magnetic field in the cloud.
We used the IRAM 30-m telescope to carry out a continuum and molecular survey
at 3 and 1 mm of early- and late-time molecules toward four selected starless
cores inside the Pipe Nebula. We found that the dust continuum emission maps
trace better the densest regions than previous 2MASS extinction maps, while
2MASS extinction maps trace better the diffuse gas. The properties of the cores
derived from dust emission show average radii of ~0.09 pc, densities of
~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the
Pipe Nebula starless cores studied are in a very early evolutionary stage, and
present a very young chemistry with different properties that allow us to
propose an evolutionary sequence. All of the cores present early-time molecular
emission, with CS detections toward all the sample. Two of them, Cores 40 and
109, present strong late-time molecular emission. There seems to be a
correlation between the chemical evolutionary stage of the cores and the local
magnetic properties that suggests that the evolution of the cores is ruled by a
local competition between the magnetic energy and other mechanisms, such as
turbulence.Comment: Accepted for publication in ApJ. 15 pages, 5 figures, 9 table
- …
