761,001 research outputs found

    A Generalized Diagonal Wythoff Nim

    Full text link
    In this paper we study a family of 2-pile Take Away games, that we denote by Generalized Diagonal Wythoff Nim (GDWN). The story begins with 2-pile Nim whose sets of options and PP-positions are {{0,t}tN}\{\{0,t\}\mid t\in \N\} and \{(t,t)\mid t\in \M \} respectively. If we to 2-pile Nim adjoin the main-\emph{diagonal} {(t,t)tN}\{(t,t)\mid t\in \N\} as options, the new game is Wythoff Nim. It is well-known that the PP-positions of this game lie on two 'beams' originating at the origin with slopes Φ=1+52>1\Phi= \frac{1+\sqrt{5}}{2}>1 and 1Φ<1\frac{1}{\Phi} < 1. Hence one may think of this as if, in the process of going from Nim to Wythoff Nim, the set of PP-positions has \emph{split} and landed some distance off the main diagonal. This geometrical observation has motivated us to ask the following intuitive question. Does this splitting of the set of PP-positions continue in some meaningful way if we, to the game of Wythoff Nim, adjoin some new \emph{generalized diagonal} move, that is a move of the form {pt,qt}\{pt, qt\}, where 0<p<q0 < p < q are fixed positive integers and t>0t > 0? Does the answer perhaps depend on the specific values of pp and qq? We state three conjectures of which the weakest form is: limtNbtat\lim_{t\in \N}\frac{b_t}{a_t} exists, and equals Φ\Phi, if and only if (p,q)(p, q) is a certain \emph{non-splitting pair}, and where {{at,bt}}\{\{a_t, b_t\}\} represents the set of PP-positions of the new game. Then we prove this conjecture for the special case (p,q)=(1,2)(p,q) = (1,2) (a \emph{splitting pair}). We prove the other direction whenever q/p<Φq / p < \Phi. In the Appendix, a variety of experimental data is included, aiming to point out some directions for future work on GDWN games.Comment: 38 pages, 34 figure

    Building Nim

    Full text link
    The game of nim, with its simple rules, its elegant solution and its historical importance is the quintessence of a combinatorial game, which is why it led to so many generalizations and modifications. We present a modification with a new spin: building nim. With given finite numbers of tokens and stacks, this two-player game is played in two stages (thus belonging to the same family of games as e.g. nine-men's morris): first building, where players alternate to put one token on one of the, initially empty, stacks until all tokens have been used. Then, the players play nim. Of course, because the solution for the game of nim is known, the goal of the player who starts nim play is a placement of the tokens so that the Nim-sum of the stack heights at the end of building is different from 0. This game is trivial if the total number of tokens is odd as the Nim-sum could never be 0, or if both the number of tokens and the number of stacks are even, since a simple mimicking strategy results in a Nim-sum of 0 after each of the second player's moves. We present the solution for this game for some non-trivial cases and state a general conjecture
    corecore