475 research outputs found

    NDELS: A Novel Approach for Nighttime Dehazing, Low-Light Enhancement, and Light Suppression

    Full text link
    This paper tackles the intricate challenge of improving the quality of nighttime images under hazy and low-light conditions. Overcoming issues including nonuniform illumination glows, texture blurring, glow effects, color distortion, noise disturbance, and overall, low light have proven daunting. Despite the inherent difficulties, this paper introduces a pioneering solution named Nighttime Dehazing, Low-Light Enhancement, and Light Suppression (NDELS). NDELS utilizes a unique network that combines three essential processes to enhance visibility, brighten low-light regions, and effectively suppress glare from bright light sources. In contrast to limited progress in nighttime dehazing, unlike its daytime counterpart, NDELS presents a comprehensive and innovative approach. The efficacy of NDELS is rigorously validated through extensive comparisons with eight state-of-the-art algorithms across four diverse datasets. Experimental results showcase the superior performance of our method, demonstrating its outperformance in terms of overall image quality, including color and edge enhancement. Quantitative (PSNR, SSIM) and qualitative metrics (CLIPIQA, MANIQA, TRES), measure these results

    Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery

    Full text link
    When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can importantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize data. However, these methods do not consider automatic exposure and tone mapping in image signal processing pipeline (ISP), leading to the limited generalization capability of deep models training using such data. Besides, existing methods struggle to handle multiple light sources due to the different sizes, shapes and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP and remodeling the principle of automatic exposure in the synthesis pipeline and design a more reliable light sources recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through convex combination, avoiding global illumination shifting and local over-saturation. Our strategy for recovering multiple light sources convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by ten types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations.Comment: ICCV 202

    Enhancing Visibility in Nighttime Haze Images Using Guided APSF and Gradient Adaptive Convolution

    Full text link
    Visibility in hazy nighttime scenes is frequently reduced by multiple factors, including low light, intense glow, light scattering, and the presence of multicolored light sources. Existing nighttime dehazing methods often struggle with handling glow or low-light conditions, resulting in either excessively dark visuals or unsuppressed glow outputs. In this paper, we enhance the visibility from a single nighttime haze image by suppressing glow and enhancing low-light regions. To handle glow effects, our framework learns from the rendered glow pairs. Specifically, a light source aware network is proposed to detect light sources of night images, followed by the APSF (Angular Point Spread Function)-guided glow rendering. Our framework is then trained on the rendered images, resulting in glow suppression. Moreover, we utilize gradient-adaptive convolution, to capture edges and textures in hazy scenes. By leveraging extracted edges and textures, we enhance the contrast of the scene without losing important structural details. To boost low-light intensity, our network learns an attention map, then adjusted by gamma correction. This attention has high values on low-light regions and low values on haze and glow regions. Extensive evaluation on real nighttime haze images, demonstrates the effectiveness of our method. Our experiments demonstrate that our method achieves a PSNR of 30.38dB, outperforming state-of-the-art methods by 13%\% on GTA5 nighttime haze dataset. Our data and code is available at: \url{https://github.com/jinyeying/nighttime_dehaze}.Comment: Accepted to ACM'MM2023, https://github.com/jinyeying/nighttime_dehaz
    • …
    corecore