2,940 research outputs found
CeO2 based catalysts for the treatment of propylene in motorcycle's exhaust gases
In this work, the catalytic activities of several single metallic oxides were studied for the treatment of propylene, a component in motorcycles' exhaust gases, under oxygen deficient conditions. Amongst them, CeO2 is one of the materials that exhibit the highest activity for the oxidation of C3H6. Therefore, several mixtures of CeO2 with other oxides (SnO2, ZrO2, Co3O4) were tested to investigate the changes in catalytic activity (both propylene conversion and CO2 selectivity). Ce0.9Zr0.1O2, Ce0.8Zr0.2O2 solid solutions and the mixtures of CeO2 and Co3O4 was shown to exhibit the highest propylene conversion and CO2 selectivity. They also exhibited good activities when tested under oxygen sufficient and excess conditions and with the presence of co-existing gases (CO, H2O)
Advanced chemical looping materials for CO2 utilization : a review
: Combining chemical looping with a traditional fuel conversion process yields a promising
technology for low-CO2-emission energy production. Bridged by the cyclic transformation of
a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two
spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by
fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical
looping combustion, a separation-ready CO2 stream is produced, which significantly improves the
CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting
in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel
process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization
via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of
a bifunctional looping material that combines both catalytic function for efficient fuel conversion
and oxygen storage function for redox cycling. For all of these chemical looping technologies,
the choice of looping materials is crucial for their industrial application. Therefore, current research
is focused on the development of a suitable looping material, which is required to have high
redox activity and stability, and good economic and environmental performance. In this review,
a series of commonly used metal oxide-based materials are firstly compared as looping material
from an industrial-application perspective. The recent advances in the enhancement of the activity
and stability of looping materials are discussed. The focus then proceeds to new findings in the
development of the bifunctional looping materials employed in the emerging catalyst-assisted
chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional
nanomaterials shows great potential for catalyst-assisted chemical looping
Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production
Several Ni catalysts of supported (on La2O3-alpha Al2O3, CeO2, and CeO2-ZrO2) or bulk types (Ni-La perovskites and NiAl2O4 spinel) have been tested in the oxidative steam reforming (OSR) of raw bio-oil, and special attention has been paid to the catalysts' regenerability by means of studies on reaction-regeneration cycles. The experimental set-up consists of two units in series, for the separation of pyrolytic lignin in the first step (at 500 degrees C) and the on line OSR of the remaining oxygenates in a fluidized bed reactor at 700 degrees C. The spent catalysts have been characterized by N-2 adsorption-desorption, X-ray diffraction and temperature programmed reduction, and temperature programmed oxidation (TPO). The results reveal that among the supported catalysts, the best balance between activity-H-2 selectivity-stability corresponds to Ni/La2O3-alpha Al2O3, due to its smaller Ni-0 particle size. Additionally, it is more selective to H-2 than perovskite catalysts and more stable than both perovskites and the spinel catalyst. However, the activity of the bulk NiAl2O4 spinel catalyst can be completely recovered after regeneration by coke combustion at 850 degrees C because the spinel structure is completely recovered, which facilitates the dispersion of Ni in the reduction step prior to reaction. Consequently, this catalyst is suitable for the OSR at a higher scale in reaction-regeneration cycles.This work was carried out with the financial support of the Department of Education Universities and Investigation of the Basque Government (IT748-13), the Ministry of Economy and Competitiveness of the Spanish Government jointly with the European Regional Development Funds (AEI/FEDER, UE) (Projects CTQ2012-35263, CTQ2015-68883-R and CTQ2016-79646-P and Ph.D. grant BES-2013-063639 for A. Arandia)
An investigation into catalysts to improve the low temperature performance of an SCR
Selective catalytic reduction with NH3 is considered as one of the most effective technologies controlling NOx emission. Metal Fe based catalysts were used in the investigation to improve the low temperature performance of NOx conversion. The temperature range studied was between 150 degrees C and 350 degrees C with the interval of 50 degrees C. The honeycomb catalysts were prepared by an impregnation method. The study also included characterization of catalysts by BET, XRD, H2-TPR, SEM and XPS methods. It is found an increase in metal Fe content from 2 to 6 % wt. offers an improvement in the catalytic performance. However, a further increment in Fe content will result in a decrease in its performance. More than 90 % NOx conversion rate could be achieved over the Fe-based honeycomb catalyst at a low temperature by doping with Ni and Zr metal with different weights. Among all the catalysts studied, the mixed metal catalyst of Fe-Ni-Zr is found the most potential one, not only because of its higher NOx conversion rate at a low temperature, but also because of its wider operation temperature window. The effect of gas hourly space velocity (GHSV) was also investigated in the study and results show as GHSV increases that reduction of NOx is decreased
Surface Spectroscopy on UHV-Grown and Technological Ni–ZrO2 Reforming Catalysts: From UHV to Operando Conditions
The final publication is available at Springer via https://doi.org/10.1007/s11244-016-0678-8.Ni nanoparticles supported on ZrO2 are a prototypical system for reforming catalysis converting methane to synthesis gas. Herein, we examine this catalyst on a fundamental level using a 2-fold approach employing industrial-grade catalysts as well as surface science based model catalysts. In both cases we examine the atomic (HRTEM/XRD/LEED) and electronic (XPS) structure, as well as the adsorption properties (FTIR/PM-IRAS), with emphasis on in situ/operando studies under atmospheric pressure conditions. For technological Ni–ZrO2 the rather large Ni nanoparticles (about 20 nm diameter) were evenly distributed over the monoclinic zirconia support. In situ FTIR spectroscopy and ex situ XRD revealed that even upon H2 exposure at 673 K no full reduction of the nickel surface was achieved. CO adsorbed reversibly on metallic and oxidic Ni sites but no CO dissociation was observed at room temperature, most likely because the Ni particle edges/steps comprised Ni oxide. CO desorption temperatures were in line with single crystal data, due to the large size of the nanoparticles. During methane dry reforming at 873 K carbon species were deposited on the Ni surface within the first 3 h but the CH4 and CO2 conversion hardly changed even during 24 h. Post reaction TEM and TPO suggest the formation of graphitic and whisker-type carbon that do not significantly block the Ni surface but rather physically block the tube reactor. Reverse water gas shift decreased the H2/CO ratio. Operando studies of methane steam reforming, simultaneously recording FTIR and MS data, detected activated CH4 (CH3 and CH2), activated water (OH), as well as different bidentate (bi)carbonate species, with the latter being involved in the water gas shift side reaction. Surface science Ni–ZrO2 model catalysts were prepared by first growing an ultrathin “trilayer” (O–Zr–O) ZrO2 support on an Pd3Zr alloy substrate, and subsequently depositing Ni, with the process being monitored by XPS and LEED. Apart from the trilayer oxide, there is a small fraction of ZrO2 clusters with more bulk-like properties. When CO was adsorbed on the (fully metallic) Ni particles at pressures up to 100 mbar, both PM-IRAS and XPS indicated CO dissociation around room temperature and blocking of the Ni surface by carbon (note that on the partially oxidized technological Ni particles, CO dissociation was absent). The Ni nanoparticles were stable up to 550 K but annealing to higher temperatures induced Ni migration through the ultrathin ZrO2 support into the Pd3Zr alloy. Both approaches have their benefits and limitations but enable us to address specific questions on a molecular level.Austrian Science Fund (FWF
Spontaneously formed porous and composite materials
In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described
Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane, methanol and ethanol includes catalysts for reforming and oxidation, methods of catalyst synthesis, and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons, from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized
- …
