116,508 research outputs found
The oxidation of Ni-rich Ni-Al intermetallics
The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field
The equation of state of solid nickel aluminide
The pressure-volume-temperature equation of state of the intermetallic
compound NiAl was calculated theoretically, and compared with experimental
measurements. Electron ground states were calculated for NiAl in the CsCl
structure, using density functional theory, and were used to predict the cold
compression curve and the density of phonon states. The Rose form of
compression curve was found to reproduce the ab initio calculations well in
compression but exhibited significant deviations in expansion. A
thermodynamically-complete equation of state was constructed for NiAl. Shock
waves were induced in crystals of NiAl by the impact of laser-launched Cu
flyers and by launching NiAl flyers into transparent windows of known
properties. The TRIDENT laser was used to accelerate the flyers to speeds
between 100 and 600m/s. Point and line-imaging laser Doppler velocimetry was
used to measure the acceleration of the flyer and the surface velocity history
of the target. The velocity histories were used to deduce the stress state, and
hence states on the principal Hugoniot and the flow stress. Flyers and targets
were recovered from most experiments. The effect of elasticity and plastic flow
in the sample and window was assessed. The ambient isotherm reproduced static
compression data very well, and the predicted Hugoniot was consistent with
shock compression data
Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature
The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature
Ferromagnetic one dimensional Ti atomic chain
Using the full potential linearized augmented plane wave (FLAPW) method, we
have explored the magnetic properties of one dimensional (1D) Ti atomic chain.
Astonishingly, we for the first time observed that the 1D Ti atomic chain has
ferromagnetic ground state even on NiAl(110) surface although the Ti has no
magnetic moment in bulk or macroscopic state. It was found that the physical
property of direct exchange interaction among Ti atoms occurred in free
standing state is well preserved on NiAl(110) surface and this feature has an
essential role in ferromagnetism of 1D Ti atomic chain. It was shown that the
m= state has the largest contribution to the magnetic moment of Ti atom
grown on NiAl(110) surface. In addition, we found that the magnetic dipole
interaction is a key factor in the study of magnetic anisotropy, not the
magnetocrystalline anisotropy arising from spin-orbit interaction
High temperature dispersion strengthening of NiAl
A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism
Rapidly solidified NiAl and FeAl
Melt spinning was used to produce rapidly solidified ribbons of the B2 intermetallics NiAl and FeAl. Both Fe-40Al and Fe-45Al possessed some bend ductility in the as spun condition. The bend ductility of Fe-40Al, Fe-45Al, and equiatomic NiAl increased with subsequent heat treatment. Heat treatment at approximately 0.85 T (sub m) resulted in significant grain growth in equiatomic FeAl and in all the NiAl compositions. Low bend ductility in both FeAl and NiAl generally coincided with intergranular failure, while increased bend ductility was characterized by increasing amounts of transgranular cleavage fracture
Thermodynamics and kinetics of reactions in protective coating systems
A study of the aluminization of Ni from packs containing various percentages of unalloyed Al confirmed that the surface aluminum content of specimens aluminized tends to decrease with time and consequently a simple parabolic law for the weight-gain vs. time relationship is not obeyed. The diffusivity-composition relationship in NiAl was examined, and a set of curves is presented. A numerical method for the calculation of coating dissolution rates was developed and applied to NiAl-Ni3Al type of coatings
- …
