219,191 research outputs found

    Recursive Attentive Methods with Reused Item Representations for Sequential Recommendation

    Full text link
    Sequential recommendation aims to recommend the next item of users' interest based on their historical interactions. Recently, the self-attention mechanism has been adapted for sequential recommendation, and demonstrated state-of-the-art performance. However, in this manuscript, we show that the self-attention-based sequential recommendation methods could suffer from the localization-deficit issue. As a consequence, in these methods, over the first few blocks, the item representations may quickly diverge from their original representations, and thus, impairs the learning in the following blocks. To mitigate this issue, in this manuscript, we develop a recursive attentive method with reused item representations (RAM) for sequential recommendation. We compare RAM with five state-of-the-art baseline methods on six public benchmark datasets. Our experimental results demonstrate that RAM significantly outperforms the baseline methods on benchmark datasets, with an improvement of as much as 11.3%. Our stability analysis shows that RAM could enable deeper and wider models for better performance. Our run-time performance comparison signifies that RAM could also be more efficient on benchmark datasets

    Time Interval-enhanced Graph Neural Network for Shared-account Cross-domain Sequential Recommendation

    Full text link
    Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.Comment: 15 pages, 6 figure

    Sequential Recommendation with Self-Attentive Multi-Adversarial Network

    Full text link
    Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability
    • …
    corecore