604,724 research outputs found

    A Stein variational Newton method

    Full text link
    Stein variational gradient descent (SVGD) was recently proposed as a general purpose nonparametric variational inference algorithm [Liu & Wang, NIPS 2016]: it minimizes the Kullback-Leibler divergence between the target distribution and its approximation by implementing a form of functional gradient descent on a reproducing kernel Hilbert space. In this paper, we accelerate and generalize the SVGD algorithm by including second-order information, thereby approximating a Newton-like iteration in function space. We also show how second-order information can lead to more effective choices of kernel. We observe significant computational gains over the original SVGD algorithm in multiple test cases.Comment: 18 pages, 7 figure

    A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    Full text link
    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative method computing a coordinate independent property of a function (such as a zero or a local minimum). All possible Newton methods on manifolds are believed to come under this framework. Changes of coordinates, and not any Riemannian structure, are shown to play a natural role in lifting the Newton method to a manifold. The framework also gives new insight into the design of Newton methods in general.Comment: 36 page

    Fractional Newton-Raphson Method Accelerated with Aitken's Method

    Full text link
    The Newton-Raphson (N-R) method is characterized by the fact that generating a divergent sequence can lead to the creation of a fractal, on the other hand the order of the fractional derivatives seems to be closely related to the fractal dimension, based on the above, a method was developed that makes use of the N-R method and the fractional derivative of Riemann-Liouville (R-L) that has been named as the Fractional Newton-Raphson (F N-R) method. In the following work we present a way to obtain the convergence of the F N-R method, which seems to be at least linearly convergent for the case where the order α\alpha of the derivative is different from one, a simplified way to construct the fractional derivative and fractional integral operators of R-L is presented, an introduction to the Aitken's method is made and it is explained why it has the capacity to accelerate the convergence of iterative methods to finally present the results that were obtained when implementing the Aitken's method in F N-R method.Comment: Newton-Raphson Method, Fractional Calculus, Fractional Derivative of Riemann-Liouville, Method of Aitken. arXiv admin note: substantial text overlap with arXiv:1710.0763

    A geometric Newton method for Oja's vector field

    Full text link
    Newton's method for solving the matrix equation F(X)AXXXTAX=0F(X)\equiv AX-XX^TAX=0 runs up against the fact that its zeros are not isolated. This is due to a symmetry of FF by the action of the orthogonal group. We show how differential-geometric techniques can be exploited to remove this symmetry and obtain a ``geometric'' Newton algorithm that finds the zeros of FF. The geometric Newton method does not suffer from the degeneracy issue that stands in the way of the original Newton method

    A quasi-Newton proximal splitting method

    Get PDF
    A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration of convex minimization problems, and leads to an elegant quasi-Newton method. The optimization method compares favorably against state-of-the-art alternatives. The algorithm has extensive applications including signal processing, sparse recovery and machine learning and classification
    corecore