233 research outputs found

    Toward the Rectilinear Crossing Number of KnK_n: New Drawings, Upper Bounds, and Asymptotics

    Get PDF
    Scheinerman and Wilf (1994) assert that `an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph K_n.' A rectilinear drawing of K_n is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersect in a point unless that point is an endpoint of all three. The rectilinear crossing number of K_n is the fewest number of edge crossings attainable over all rectilinear drawings of K_n. For each n we construct a rectilinear drawing of K_n that has the fewest number of edge crossings and the best asymptotics known to date. Moreover, we give some alternative infinite families of drawings of K_n with good asymptotics. Finally, we mention some old and new open problems.Comment: 13 Page

    On the pseudolinear crossing number

    Full text link
    A drawing of a graph is {\em pseudolinear} if there is a pseudoline arrangement such that each pseudoline contains exactly one edge of the drawing. The {\em pseudolinear crossing number} of a graph GG is the minimum number of pairwise crossings of edges in a pseudolinear drawing of GG. We establish several facts on the pseudolinear crossing number, including its computational complexity and its relationship to the usual crossing number and to the rectilinear crossing number. This investigation was motivated by open questions and issues raised by Marcus Schaefer in his comprehensive survey of the many variants of the crossing number of a graph.Comment: 12 page

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure
    • …
    corecore