120,441 research outputs found

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Fast Computation of Fourier Integral Operators

    Get PDF
    We introduce a general purpose algorithm for rapidly computing certain types of oscillatory integrals which frequently arise in problems connected to wave propagation and general hyperbolic equations. The problem is to evaluate numerically a so-called Fourier integral operator (FIO) of the form e2πiΦ(x,ξ)a(x,ξ)f^(ξ)dξ\int e^{2\pi i \Phi(x,\xi)} a(x,\xi) \hat{f}(\xi) \mathrm{d}\xi at points given on a Cartesian grid. Here, ξ\xi is a frequency variable, f^(ξ)\hat f(\xi) is the Fourier transform of the input ff, a(x,ξ)a(x,\xi) is an amplitude and Φ(x,ξ)\Phi(x,\xi) is a phase function, which is typically as large as ξ|\xi|; hence the integral is highly oscillatory at high frequencies. Because an FIO is a dense matrix, a naive matrix vector product with an input given on a Cartesian grid of size NN by NN would require O(N4)O(N^4) operations. This paper develops a new numerical algorithm which requires O(N2.5logN)O(N^{2.5} \log N) operations, and as low as O(N)O(\sqrt{N}) in storage space. It operates by localizing the integral over polar wedges with small angular aperture in the frequency plane. On each wedge, the algorithm factorizes the kernel e2πiΦ(x,ξ)a(x,ξ)e^{2 \pi i \Phi(x,\xi)} a(x,\xi) into two components: 1) a diffeomorphism which is handled by means of a nonuniform FFT and 2) a residual factor which is handled by numerical separation of the spatial and frequency variables. The key to the complexity and accuracy estimates is that the separation rank of the residual kernel is \emph{provably independent of the problem size}. Several numerical examples demonstrate the efficiency and accuracy of the proposed methodology. We also discuss the potential of our ideas for various applications such as reflection seismology.Comment: 31 pages, 3 figure
    corecore