4,486 research outputs found

    Asymptotic existence of orthogonal designs

    Get PDF
    v, 115 leaves ; 29 cmAn orthogonal design of order n and type (si,..., se), denoted OD(n; si,..., se), is a square matrix X of order n with entries from {0, ±x1,..., ±xe}, where the Xj’s are commuting variables, that satisfies XX* = ^ ^g=1 sjx^j In, where X* denotes the transpose of X, and In is the identity matrix of order n. An asymptotic existence of orthogonal designs is shown. More precisely, for any Atuple (s1,..., se) of positive integers, there exists an integer N = N(s1,..., se) such that for each n > N, there is an OD(2n(s1 + ... + se); 2ns1,..., 2nse). This result of Chapter 5 complements a result of Peter Eades et al. which in turn implies that if the positive integers s1, s2,..., se are all highly divisible by 2, then there is a full orthogonal design of type (s1, s2,..., se). Some new classes of orthogonal designs related to weighing matrices are obtained in Chapter 3. In Chapter 4, we deal with product designs and amicable orthogonal designs, and a construction method is presented. Signed group orthogonal designs, a natural extension of orthogonal designs, are introduced in Chapter 6. Furthermore, an asymptotic existence of signed group orthogonal designs is obtained and applied to show the asymptotic existence of orthogonal designs

    Some non-existence and asymptotic existence results for weighing matrices

    Full text link
    Orthogonal designs and weighing matrices have many applications in areas such as coding theory, cryptography, wireless networking and communication. In this paper, we first show that if positive integer kk cannot be written as the sum of three integer squares, then there does not exist any skew-symmetric weighing matrix of order 4n4n and weight kk, where nn is an odd positive integer. Then we show that for any square kk, there is an integer N(k)N(k) such that for each n≥N(k)n\ge N(k), there is a symmetric weighing matrix of order nn and weight kk. Moreover, we improve some of the asymptotic existence results for weighing matrices obtained by Eades, Geramita and Seberry.Comment: To appear in International Journal of Combinatorics (Hindawi). in Int. J. Combin. (Feb 2016

    Quantum Algorithms for Weighing Matrices and Quadratic Residues

    Get PDF
    In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the article we consider Paley's construction of Hadamard matrices, which relies on the properties of quadratic characters over finite fields. We design a query problem that uses the Legendre symbol chi (which indicates if an element of a finite field F_q is a quadratic residue or not). It is shown how for a shifted Legendre function f_s(i)=chi(i+s), the unknown s in F_q can be obtained exactly with only two quantum calls to f_s. This is in sharp contrast with the observation that any classical, probabilistic procedure requires more than log(q) + log((1-e)/2) queries to solve the same problem.Comment: 18 pages, no figures, LaTeX2e, uses packages {amssymb,amsmath}; classical upper bounds added, presentation improve

    Constructions for orthogonal designs using signed group orthogonal designs

    Full text link
    Craigen introduced and studied signed group Hadamard matrices extensively and eventually provided an asymptotic existence result for Hadamard matrices. Following his lead, Ghaderpour introduced signed group orthogonal designs and showed an asymptotic existence result for orthogonal designs and consequently Hadamard matrices. In this paper, we construct some interesting families of orthogonal designs using signed group orthogonal designs to show the capability of signed group orthogonal designs in generation of different types of orthogonal designs.Comment: To appear in Discrete Mathematics (Elsevier). No figure
    • …
    corecore