6,042,283 research outputs found

    New materials for fireplace logs

    Get PDF
    Fibrous insulation and refractory concrete are used for logs as well as fireproof walls, incinerator bricks, planters, and roof shingles. Insulation is lighter and more shock resistant than fireclay. Lightweight slag bonded with refractory concrete serves as aggregrate

    New Materials and New Configurations for Advanced Electrochemical Capacitors

    Get PDF
    Today, electrochemical capacitors (ECs) have the potential to emerge as a promising energy storage technology. The weakness of EC systems is certainly the limited energy density, which restricts applications to power delivery over only few seconds. As a consequence, many research efforts are focused on designing new materials to improve energy and power densities. These are reviewed below

    Magnetocaloric materials: the search for new systems

    Full text link
    The prospect of efficient solid state refrigeration at room temperature is driving research into magnetic cooling engine design and magnetic phase transition-based refrigerants. In this Viewpoint an Ashby-style map of magnetic refrigerant properties is constructed, comparing popular materials with limits derived from an idealised first order transition model. This comparison demonstrates the potential for new magnetocaloric material systems to be established through structural control and optimisation at the atomic-, nano- and micro-scale.Comment: 6 pages, 2 figures (both in colour). Section 2.2 on cooling power is an online Appendix in published version in Scripta Materialia. Version 5: corrected typo in the Figure 2 captio

    New examples of three-dimensional dilational materials

    Full text link
    Two-dimensional dilational materials, for which the only easy mode of deformation is a dilation are reviewed and connections are drawn between models previously proposed in the literature. Some models which appear to be dilational materials, but which in fact are not, are also discussed. Finally, four new examples of three-dimensional dilational materials are given.Comment: 11 page

    High precision cryogenic thermal conductivity standards

    Get PDF
    New apparatus allows accurate simultaneous measurement of thermal conductivity, electrical resistivity, and thermopower for technically important materials, such as new or uncommon alloys. A list of materials investigated is presented. Sources for obtaining data on these materials, as well as the source giving a description of the apparatus, are cited

    New laser materials for laser diode pumping

    Get PDF
    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available

    Quest for New Quantum States via Field-Editing Technology

    Full text link
    We report new quantum states in spin-orbit-coupled single crystals that are synthesized using a game-changing technology that "field-edits" crystal structures (borrowing from the phrase "genome editing") via application of magnetic field during crystal growth. This study is intended to fundamentally address a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due chiefly to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the "field-edited" materials not only are much less distorted but also exhibit novel phenomena absent in their "non-edited" counterparts. The field-edited materials include an array of 4d and 5d transition metal oxides, and three representative materials presented here are Ba4Ir3O10, Ca2RuO4, and Sr2IrO4. This study provides an entirely new paradigm for discovery of new quantum states and materials otherwise unavailable.Comment: 6 figure

    Electrides as a New Platform of Topological Materials

    Full text link
    Recent discoveries of topological phases realized in electronic states in solids have revealed an important role of topology, which ubiquitously appears in various materials in nature. Many well-known materials have turned out to be topological materials, and this new viewpoint of topology has opened a new horizon in material science. In this paper we find that electrides are suitable for achieving various topological phases, including topological insulating and topological semimetal phases. In the electrides, in which electrons serve as anions, the bands occupied by the anionic electrons lie near the Fermi level, because the anionic electrons are weakly bound by the lattice. This property of the electrides is favorable for achieving band inversions needed for topological phases, and thus the electrides are prone to topological phases. From such a point of view, we find many topological electrides, Y2_2C (nodal-line semimetal (NLS)), Sc2_2C (insulator with π\pi Zak phase), Sr2_2Bi (NLS), HfBr (quantum spin Hall system), and LaBr (quantum anomalous Hall insulator), by using ab initio calculation. The close relationship between the electrides and the topological materials is useful in material science in both fields.Comment: 12 pages, 9 figure
    corecore