6,880 research outputs found

    Satisfiability Modulo Transcendental Functions via Incremental Linearization

    Full text link
    In this paper we present an abstraction-refinement approach to Satisfiability Modulo the theory of transcendental functions, such as exponentiation and trigonometric functions. The transcendental functions are represented as uninterpreted in the abstract space, which is described in terms of the combined theory of linear arithmetic on the rationals with uninterpreted functions, and are incrementally axiomatized by means of upper- and lower-bounding piecewise-linear functions. Suitable numerical techniques are used to ensure that the abstractions of the transcendental functions are sound even in presence of irrationals. Our experimental evaluation on benchmarks from verification and mathematics demonstrates the potential of our approach, showing that it compares favorably with delta-satisfiability /interval propagation and methods based on theorem proving

    On transcendental numbers: new results and a little history

    Full text link
    Attempting to create a general framework for studying new results on transcendental numbers, this paper begins with a survey on transcendental numbers and transcendence, it then presents several properties of the transcendental numbers ee and π\pi, and then it gives the proofs of new inequalities and identities for transcendental numbers. Also, in relationship with these topics, we study some implications for the theory of the Yang-Baxter equations, and we propose some open problems.Comment: 8 page

    Measures of algebraic approximation to Markoff extremal numbers

    Full text link
    Let xi be a real number which is neither rational nor quadratic over Q. Based on work of Davenport and Schmidt, Bugeaud and Laurent have shown that, for any real number theta, there exist a constant c>0 and infinitely many non-zero polynomials P in Z[T] of degree at most 2 such that |theta-P(xi)| < c |P|^{-gamma} where gamma=(1+sqrt{5})/2 denotes for the golden ratio and where the norm |P| of P stands for the largest absolute value of its coefficients. In the present paper, we show conversely that there exists a class of transcendental numbers xi for which the above estimates are optimal up to the value of the constant c when one takes theta=R(xi) for a polynomial R in Z[T] of degree d = 3, 4 or 5 but curiously not for degree d=6, even with theta = 2 xi^6.Comment: 27 page

    Transcendental equations satisfied by the individual zeros of Riemann ζ\zeta, Dirichlet and modular LL-functions

    Full text link
    We consider the non-trivial zeros of the Riemann ζ\zeta-function and two classes of LL-functions; Dirichlet LL-functions and those based on level one modular forms. We show that there are an infinite number of zeros on the critical line in one-to-one correspondence with the zeros of the cosine function, and thus enumerated by an integer nn. From this it follows that the ordinate of the nn-th zero satisfies a transcendental equation that depends only on nn. Under weak assumptions, we show that the number of solutions of this equation already saturates the counting formula on the entire critical strip. We compute numerical solutions of these transcendental equations and also its asymptotic limit of large ordinate. The starting point is an explicit formula, yielding an approximate solution for the ordinates of the zeros in terms of the Lambert WW-function. Our approach is a novel and simple method, that takes into account argL\arg L, to numerically compute non-trivial zeros of LL-functions. The method is surprisingly accurate, fast and easy to implement. Employing these numerical solutions, in particular for the ζ\zeta-function, we verify that the leading order asymptotic expansion is accurate enough to numerically support Montgomery's and Odlyzko's pair correlation conjectures, and also to reconstruct the prime number counting function. Furthermore, the numerical solutions of the exact transcendental equation can determine the ordinates of the zeros to any desired accuracy. We also study in detail Dirichlet LL-functions and the LL-function for the modular form based on the Ramanujan τ\tau-function, which is closely related to the bosonic string partition function.Comment: Matches the version to appear in Communications in Number Theory and Physics, based on arXiv:1407.4358 [math.NT], arXiv:1309.7019 [math.NT], and arXiv:1307.8395 [math.NT

    Duality relations in the auxiliary field method

    Full text link
    The eigenenergies ϵ(N)(m;{ni,li})\epsilon^{(N)}(m;\{n_i,l_i\}) of a system of NN identical particles with a mass mm are functions of the various radial quantum numbers nin_i and orbital quantum numbers lil_i. Approximations E(N)(m;Q)E^{(N)}(m;Q) of these eigenenergies, depending on a principal quantum number Q({ni,li})Q(\{n_i,l_i\}), can be obtained in the framework of the auxiliary field method. We demonstrate the existence of numerous exact duality relations linking quantities E(N)(m;Q)E^{(N)}(m;Q) and E(p)(m;Q)E^{(p)}(m';Q') for various forms of the potentials (independent of mm and NN) and for both nonrelativistic and semirelativistic kinematics. As the approximations computed with the auxiliary field method can be very close to the exact results, we show with several examples that these duality relations still hold, with sometimes a good accuracy, for the exact eigenenergies ϵ(N)(m;{ni,li})\epsilon^{(N)}(m;\{n_i,l_i\})

    On transcendental numbers

    Full text link
    Transcendental numbers play an important role in many areas of science. This paper contains a short survey on transcendental numbers and some relations among them. New inequalities for transcendental numbers are stated in Section 2 and proved in Section 4. Also, in relationship with these topics, we study the exponential function axioms related to the Yang-Baxter equation.Comment: 6 page
    corecore