4 research outputs found

    Blockchain for IoT Access Control: Recent Trends and Future Research Directions

    Full text link
    With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively

    The Role of the Adversary Model in Applied Security Research

    Get PDF
    Adversary models have been integral to the design of provably-secure cryptographic schemes or protocols. However, their use in other computer science research disciplines is relatively limited, particularly in the case of applied security research (e.g., mobile app and vulnerability studies). In this study, we conduct a survey of prominent adversary models used in the seminal field of cryptography, and more recent mobile and Internet of Things (IoT) research. Motivated by the findings from the cryptography survey, we propose a classification scheme for common app-based adversaries used in mobile security research, and classify key papers using the proposed scheme. Finally, we discuss recent work involving adversary models in the contemporary research field of IoT. We contribute recommendations to aid researchers working in applied (IoT) security based upon our findings from the mobile and cryptography literature. The key recommendation is for authors to clearly define adversary goals, assumptions and capabilities

    IOT enabled greenhouse automatic control system for energy efficiency optimization.

    Get PDF
    Luk, Patrick Chi-Kwong - Associate SupervisorAgricultural greenhouses provide optimal conditions for plant growth, but they consume an excessive amount of energy, making energy the second-largest expense after labour costs. Most of the energy is used for heating, which is a major contributor to the high energy demand of the system. Precise and timely control technology can help reduce energy costs and increase profitability. The integration of IoT into greenhouses is a new development in smart agriculture that has the potential to optimise energy use. Various methods exist for optimising energy use in greenhouses, including the use of phase change materials, efficient greenhouse construction designs, and control systems. However, smart automatic control systems are an efficient method that has not been explored enough. Understanding the control algorithm and its proper implementation for use in the greenhouse control system is critical for energy optimisation. This thesis makes three main contributions to greenhouse temperature control. First, a dynamic, physics-based model of greenhouse temperature was optimised to be adaptable for greenhouses equipped with IoT hardware. Second, two control algorithms were implemented in simulation to regulate the system to the grower's desired temperature, while four other control algorithms were implemented to evaluate their energy minimization capability. Results showed that the MPC controller was the best controller in terms of energy savings. Nevertheless, for small to medium greenhouse operators who may have limited resources, relatively simple on-off control algorithm is cost-effective. Finally, the study demonstrates that an IoT-based control system can optimise the energy use in the greenhouse. The use of IoT technology has the capacity to overcome the greenhouse energy management problem with a distribution control system aided by cloud computing. This study demonstrates the potential of IoT-based control systems to save energy and improve greenhouse efficiency by reducing delays and increasing control effectiveness.PhD in Energy and Powe
    corecore