63 research outputs found

    Settling Some Open Problems on 2-Player Symmetric Nash Equilibria

    Full text link
    Over the years, researchers have studied the complexity of several decision versions of Nash equilibrium in (symmetric) two-player games (bimatrix games). To the best of our knowledge, the last remaining open problem of this sort is the following; it was stated by Papadimitriou in 2007: find a non-symmetric Nash equilibrium (NE) in a symmetric game. We show that this problem is NP-complete and the problem of counting the number of non-symmetric NE in a symmetric game is #P-complete. In 2005, Kannan and Theobald defined the "rank of a bimatrix game" represented by matrices (A, B) to be rank(A+B) and asked whether a NE can be computed in rank 1 games in polynomial time. Observe that the rank 0 case is precisely the zero sum case, for which a polynomial time algorithm follows from von Neumann's reduction of such games to linear programming. In 2011, Adsul et. al. obtained an algorithm for rank 1 games; however, it does not solve the case of symmetric rank 1 games. We resolve this problem

    The computational complexity of rationalizing Pareto optimal choice behavior

    Get PDF
    We consider a setting where a coalition of individuals chooses one or several alternatives from each set in a collection of choice sets. We examine the computational complexity of Pareto rationalizability. Pareto rationalizability requires that we can endow each individual in the coalition with a preference relation such that the observed choices are Pareto efficient. We differentiate between the situation where the choice function is considered to select all Pareto optimal alternatives from a choice set and the situation where it only contains one or several Pareto optimal alternatives. In the former case we find that Pareto rationalizability is an NP-complete problem. For the latter case we demonstrate that, if we have no additional information on the individual preference relations, then all choice behavior is Pareto rationalizable. However, if we have such additional information, then Pareto rationalizability is again NP-complete. Our results are valid for any coalition of size greater or equal than two.

    The computational complexity of rationalizing Pareto optimal choice behavior.

    Get PDF
    We consider a setting where a coalition of individuals chooses one or several alternatives from each set in a collection of choice sets. We examine the computational complexity of Pareto rationalizability. Pareto rationalizability requires that we can endow each individual in the coalition with a preference relation such that the observed choices are Pareto efficient. We differentiate between the situation where the choice function is considered to select all Pareto optimal alternatives from a choice set and the situation where it only contains one or several Pareto optimal alternatives. In the former case we find that Pareto rationalizability is an NP-complete problem. For the latter case we demonstrate that, if we have no additional information on the individual preference relations, then all choice behavior is Pareto rationalizable. However, if we have such additional information, then Pareto rationalizability is again NP-complete. Our results are valid for any coalition of size greater or equal than two.
    corecore