37,103 research outputs found

    On Pseudocodewords and Improved Union Bound of Linear Programming Decoding of HDPC Codes

    Full text link
    In this paper, we present an improved union bound on the Linear Programming (LP) decoding performance of the binary linear codes transmitted over an additive white Gaussian noise channels. The bounding technique is based on the second-order of Bonferroni-type inequality in probability theory, and it is minimized by Prim's minimum spanning tree algorithm. The bound calculation needs the fundamental cone generators of a given parity-check matrix rather than only their weight spectrum, but involves relatively low computational complexity. It is targeted to high-density parity-check codes, where the number of their generators is extremely large and these generators are spread densely in the Euclidean space. We explore the generator density and make a comparison between different parity-check matrix representations. That density effects on the improvement of the proposed bound over the conventional LP union bound. The paper also presents a complete pseudo-weight distribution of the fundamental cone generators for the BCH[31,21,5] code

    Learning the dependence structure of rare events: a non-asymptotic study

    Full text link
    Assessing the probability of occurrence of extreme events is a crucial issue in various fields like finance, insurance, telecommunication or environmental sciences. In a multivariate framework, the tail dependence is characterized by the so-called stable tail dependence function (STDF). Learning this structure is the keystone of multivariate extremes. Although extensive studies have proved consistency and asymptotic normality for the empirical version of the STDF, non-asymptotic bounds are still missing. The main purpose of this paper is to fill this gap. Taking advantage of adapted VC-type concentration inequalities, upper bounds are derived with expected rate of convergence in O(k^-1/2). The concentration tools involved in this analysis rely on a more general study of maximal deviations in low probability regions, and thus directly apply to the classification of extreme data
    • …
    corecore