18,971 research outputs found

    A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains

    Get PDF
    We propose and analyze a new discretization technique for a linear-quadratic optimal control problem involving the fractional powers of a symmetric and uniformly elliptic second oder operator; control constraints are considered. Since these fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation, we recast our problem as a nonuniformly elliptic optimal control problem. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We propose a fully discrete scheme that is based on piecewise linear functions on quasi-uniform meshes to approximate the optimal control and first-degree tensor product functions on anisotropic meshes for the optimal state variable. We provide an a priori error analysis that relies on derived Holder and Sobolev regularity estimates for the optimal variables and error estimates for an scheme that approximates fractional diffusion on curved domains; the latter being an extension of previous available results. The analysis is valid in any dimension. We conclude by presenting some numerical experiments that validate the derived error estimates

    Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes

    Get PDF
    In this work we present and analyse new inf-sup stable, and stabilised, finite element methods for the Oseen equation in anisotropic quadrilateral meshes. The meshes are formed of closed parallelograms, and the analysis is restricted to two space dimensions. Starting with the lowest order QIn this work we present and analyse new inf-sup stable, and stabilised, finite element methods for the Oseen equation in anisotropic quadrilateral meshes. The meshes are formed of closed parallelograms, and the analysis is restricted to two space dimensions. Starting with the lowest order Q2 1 × P0 pair, we first identify the pressure components that make this finite element pair to be non-inf-sup stable, especially with respect to the aspect ratio. We then propose a way to penalise them, both strongly, by directly removing them from the space, and weakly, by adding a stabilisation term based on jumps of the pressure across selected edges. Concerning the velocity stabilisation, we propose an enhanced grad-div term. Stability and optimal a priori error estimates are given, and the results are confirmed numerically. Q21 × P0 pair, we first identify the pressure components that make this finite element pair to be non-inf-sup stable, especially with respect to the aspect ratio. We then propose a way to penalise them, both strongly, by directly removing them from the space, and weakly, by adding a stabilisation term based on jumps of the pressure across selected edges. Concerning the velocity stabilisation, we propose an enhanced grad-div term. Stability and optimal a priori error estimates are given, and the results are confirmed numerically

    A FEM for an optimal control problem of fractional powers of elliptic operators

    Full text link
    We study solution techniques for a linear-quadratic optimal control problem involving fractional powers of elliptic operators. These fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. Thus, we consider an equivalent formulation with a nonuniformly elliptic operator as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We discretize the proposed truncated state equation using first degree tensor product finite elements on anisotropic meshes. For the control problem we analyze two approaches: one that is semi-discrete based on the so-called variational approach, where the control is not discretized, and the other one is fully discrete via the discretization of the control by piecewise constant functions. For both approaches, we derive a priori error estimates with respect to the degrees of freedom. Numerical experiments validate the derived error estimates and reveal a competitive performance of anisotropic over quasi-uniform refinement

    A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

    Full text link
    In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the "best MM-terms" based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine and non-affine analytic functions, and can be applied to sparse grids build from one dimensional rules with arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare the performance of our quasi-optimal interpolant to several alternative SG schemes
    • …
    corecore