246 research outputs found

    Dimensionality reduction with subgaussian matrices: a unified theory

    Full text link
    We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson-Lindenstrauss type results obtained earlier for specific data sets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, we establish a new Johnson-Lindenstrauss embedding for data sets taking the form of an infinite union of subspaces of a Hilbert space

    Isometric sketching of any set via the Restricted Isometry Property

    Full text link
    In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high dimensions can be embedded into lower dimensions with near optimal distortion. We obtain our results by connecting dimensionality reduction of any set to dimensionality reduction of sparse vectors via a chaining argument.Comment: 17 page

    New bounds for circulant Johnson-Lindenstrauss embeddings

    Full text link
    This paper analyzes circulant Johnson-Lindenstrauss (JL) embeddings which, as an important class of structured random JL embeddings, are formed by randomizing the column signs of a circulant matrix generated by a random vector. With the help of recent decoupling techniques and matrix-valued Bernstein inequalities, we obtain a new bound k=O(ϵ2log(1+δ)(n))k=O(\epsilon^{-2}\log^{(1+\delta)} (n)) for Gaussian circulant JL embeddings. Moreover, by using the Laplace transform technique (also called Bernstein's trick), we extend the result to subgaussian case. The bounds in this paper offer a small improvement over the current best bounds for Gaussian circulant JL embeddings for certain parameter regimes and are derived using more direct methods.Comment: 11 pages; accepted by Communications in Mathematical Science

    The Restricted Isometry Property of Subsampled Fourier Matrices

    Full text link
    A matrix ACq×NA \in \mathbb{C}^{q \times N} satisfies the restricted isometry property of order kk with constant ε\varepsilon if it preserves the 2\ell_2 norm of all kk-sparse vectors up to a factor of 1±ε1\pm \varepsilon. We prove that a matrix AA obtained by randomly sampling q=O(klog2klogN)q = O(k \cdot \log^2 k \cdot \log N) rows from an N×NN \times N Fourier matrix satisfies the restricted isometry property of order kk with a fixed ε\varepsilon with high probability. This improves on Rudelson and Vershynin (Comm. Pure Appl. Math., 2008), its subsequent improvements, and Bourgain (GAFA Seminar Notes, 2014).Comment: 16 page
    corecore