88 research outputs found

    New bounds for circulant Johnson-Lindenstrauss embeddings

    Full text link
    This paper analyzes circulant Johnson-Lindenstrauss (JL) embeddings which, as an important class of structured random JL embeddings, are formed by randomizing the column signs of a circulant matrix generated by a random vector. With the help of recent decoupling techniques and matrix-valued Bernstein inequalities, we obtain a new bound k=O(ϵ2log(1+δ)(n))k=O(\epsilon^{-2}\log^{(1+\delta)} (n)) for Gaussian circulant JL embeddings. Moreover, by using the Laplace transform technique (also called Bernstein's trick), we extend the result to subgaussian case. The bounds in this paper offer a small improvement over the current best bounds for Gaussian circulant JL embeddings for certain parameter regimes and are derived using more direct methods.Comment: 11 pages; accepted by Communications in Mathematical Science

    Improved analysis of the subsampled randomized Hadamard transform

    Get PDF
    This paper presents an improved analysis of a structured dimension-reduction map called the subsampled randomized Hadamard transform. This argument demonstrates that the map preserves the Euclidean geometry of an entire subspace of vectors. The new proof is much simpler than previous approaches, and it offers---for the first time---optimal constants in the estimate on the number of dimensions required for the embedding.Comment: 8 pages. To appear, Advances in Adaptive Data Analysis, special issue "Sparse Representation of Data and Images." v2--v4 include minor correction

    Sketching via hashing: from heavy hitters to compressed sensing to sparse fourier transform

    Get PDF
    Sketching via hashing is a popular and useful method for processing large data sets. Its basic idea is as follows. Suppose that we have a large multi-set of elements S=[formula], and we would like to identify the elements that occur “frequently" in S. The algorithm starts by selecting a hash function h that maps the elements into an array c[1…m]. The array entries are initialized to 0. Then, for each element a ∈ S, the algorithm increments c[h(a)]. At the end of the process, each array entry c[j] contains the count of all data elements a ∈ S mapped to j

    Stable Recovery Of Sparse Vectors From Random Sinusoidal Feature Maps

    Full text link
    Random sinusoidal features are a popular approach for speeding up kernel-based inference in large datasets. Prior to the inference stage, the approach suggests performing dimensionality reduction by first multiplying each data vector by a random Gaussian matrix, and then computing an element-wise sinusoid. Theoretical analysis shows that collecting a sufficient number of such features can be reliably used for subsequent inference in kernel classification and regression. In this work, we demonstrate that with a mild increase in the dimension of the embedding, it is also possible to reconstruct the data vector from such random sinusoidal features, provided that the underlying data is sparse enough. In particular, we propose a numerically stable algorithm for reconstructing the data vector given the nonlinear features, and analyze its sample complexity. Our algorithm can be extended to other types of structured inverse problems, such as demixing a pair of sparse (but incoherent) vectors. We support the efficacy of our approach via numerical experiments

    Subspace clustering of dimensionality-reduced data

    Full text link
    Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, assumed unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from "undersampling" due to complexity and speed constraints on the acquisition device. More pertinently, even if one has access to the high-dimensional data set it is often desirable to first project the data points into a lower-dimensional space and to perform the clustering task there; this reduces storage requirements and computational cost. The purpose of this paper is to quantify the impact of dimensionality-reduction through random projection on the performance of the sparse subspace clustering (SSC) and the thresholding based subspace clustering (TSC) algorithms. We find that for both algorithms dimensionality reduction down to the order of the subspace dimensions is possible without incurring significant performance degradation. The mathematical engine behind our theorems is a result quantifying how the affinities between subspaces change under random dimensionality reducing projections.Comment: ISIT 201

    Isometric sketching of any set via the Restricted Isometry Property

    Full text link
    In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high dimensions can be embedded into lower dimensions with near optimal distortion. We obtain our results by connecting dimensionality reduction of any set to dimensionality reduction of sparse vectors via a chaining argument.Comment: 17 page
    corecore