17,721 research outputs found

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    A Geometric Theory for Hypergraph Matching

    Full text link
    We develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: 'space barriers' from convex geometry, and 'divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, we introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. We determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, our main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, we apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in 3-graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemer\'edi Theorem. Here we prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical we defer it to a subsequent paper.Comment: Accepted for publication in Memoirs of the American Mathematical Society. 101 pages. v2: minor changes including some additional diagrams and passages of expository tex

    On Some Properties of Quadratic APN Functions of a Special Form

    Full text link
    In a recent paper, it is shown that functions of the form L1(x3)+L2(x9)L_1(x^3)+L_2(x^9), where L1L_1 and L2L_2 are linear, are a good source for construction of new infinite families of APN functions. In the present work we study necessary and sufficient conditions for such functions to be APN

    A Multipartite Hajnal-Szemer\'edi Theorem

    Get PDF
    The celebrated Hajnal-Szemer\'edi theorem gives the precise minimum degree threshold that forces a graph to contain a perfect K_k-packing. Fischer's conjecture states that the analogous result holds for all multipartite graphs except for those formed by a single construction. Recently, we deduced an approximate version of this conjecture from new results on perfect matchings in hypergraphs. In this paper, we apply a stability analysis to the extremal cases of this argument, thus showing that the exact conjecture holds for any sufficiently large graph.Comment: Final version, accepted to appear in JCTB. 43 pages, 2 figure

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D≥2⌈n/4⌉−1D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ′(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D≥⌊n/2⌋D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure
    • …
    corecore