5,288 research outputs found

    Mobile Big Data Analytics in Healthcare

    Get PDF
    Mobile and ubiquitous devices are everywhere around us generating considerable amount of data. The concept of mobile computing and analytics is expanding due to the fact that we are using mobile devices day in and out without even realizing it. These mobile devices use Wi-Fi, Bluetooth or mobile data to be intermittently connected to the world, generating, sending and receiving data on the move. Latest mobile applications incorporating graphics, video and audio are main causes of loading the mobile devices by consuming battery, memory and processing power. Mobile Big data analytics includes for instance, big health data, big location data, big social media data, and big heterogeneous data. Healthcare is undoubtedly one of the most data-intensive industries nowadays and the challenge is not only in acquiring, storing, processing and accessing data, but also in engendering useful insights out of it. These insights generated from health data may reduce health monitoring cost, enrich disease diagnosis, therapy, and care and even lead to human lives saving. The challenge in mobile data and Big data analytics is how to meet the growing performance demands of these activities while minimizing mobile resource consumption. This thesis proposes a scalable architecture for mobile big data analytics implementing three new algorithms (i.e. Mobile resources optimization, Mobile analytics customization and Mobile offloading), for the effective usage of resources in performing mobile data analytics. Mobile resources optimization algorithm monitors the resources and switches off unused network connections and application services whenever resources are limited. However, analytics customization algorithm attempts to save energy by customizing the analytics process while implementing some data-aware techniques. Finally, mobile offloading algorithm decides on the fly whether to process data locally or delegate it to a Cloud back-end server. The ultimate goal of this research is to provide healthcare decision makers with the advancements in mobile Big data analytics and support them in handling large and heterogeneous health datasets effectively on the move

    Wiki-health: from quantified self to self-understanding

    Get PDF
    Today, healthcare providers are experiencing explosive growth in data, and medical imaging represents a significant portion of that data. Meanwhile, the pervasive use of mobile phones and the rising adoption of sensing devices, enabling people to collect data independently at any time or place is leading to a torrent of sensor data. The scale and richness of the sensor data currently being collected and analysed is rapidly growing. The key challenges that we will be facing are how to effectively manage and make use of this abundance of easily-generated and diverse health data. This thesis investigates the challenges posed by the explosive growth of available healthcare data and proposes a number of potential solutions to the problem. As a result, a big data service platform, named Wiki-Health, is presented to provide a unified solution for collecting, storing, tagging, retrieving, searching and analysing personal health sensor data. Additionally, it allows users to reuse and remix data, along with analysis results and analysis models, to make health-related knowledge discovery more available to individual users on a massive scale. To tackle the challenge of efficiently managing the high volume and diversity of big data, Wiki-Health introduces a hybrid data storage approach capable of storing structured, semi-structured and unstructured sensor data and sensor metadata separately. A multi-tier cloud storage system—CACSS has been developed and serves as a component for the Wiki-Health platform, allowing it to manage the storage of unstructured data and semi-structured data, such as medical imaging files. CACSS has enabled comprehensive features such as global data de-duplication, performance-awareness and data caching services. The design of such a hybrid approach allows Wiki-Health to potentially handle heterogeneous formats of sensor data. To evaluate the proposed approach, we have developed an ECG-based health monitoring service and a virtual sensing service on top of the Wiki-Health platform. The two services demonstrate the feasibility and potential of using the Wiki-Health framework to enable better utilisation and comprehension of the vast amounts of sensor data available from different sources, and both show significant potential for real-world applications.Open Acces

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc

    Neuro-critical multimodal Edge-AI monitoring algorithm and IoT system design and development

    Get PDF
    In recent years, with the continuous development of neurocritical medicine, the success rate of treatment of patients with traumatic brain injury (TBI) has continued to increase, and the prognosis has also improved. TBI patients' condition is usually very complicated, and after treatment, patients often need a more extended time to recover. The degree of recovery is also related to prognosis. However, as a young discipline, neurocritical medicine still has many shortcomings. Especially in most hospitals, the condition of Neuro-intensive Care Unit (NICU) is uneven, the equipment has limited functionality, and there is no unified data specification. Most of the instruments are cumbersome and expensive, and patients often need to pay high medical expenses. Recent years have seen a rapid development of big data and artificial intelligence (AI) technology, which are advancing the medical IoT field. However, further development and a wider range of applications of these technologies are needed to achieve widespread adoption. Based on the above premises, the main contributions of this thesis are the following. First, the design and development of a multi-modal brain monitoring system including 8-channel electroencephalography (EEG) signals, dual-channel NIRS signals, and intracranial pressure (ICP) signals acquisition. Furthermore, an integrated display platform for multi-modal physiological data to display and analysis signals in real-time was designed. This thesis also introduces the use of the Qt signal and slot event processing mechanism and multi-threaded to improve the real-time performance of data processing to a higher level. In addition, multi-modal electrophysiological data storage and processing was realized on cloud server. The system also includes a custom built Django cloud server which realizes real-time transmission between server and WeChat applet. Based on WebSocket protocol, the data transmission delay is less than 10ms. The analysis platform can be equipped with deep learning models to realize the monitoring of patients with epileptic seizures and assess the level of consciousness of Disorders of Consciousness (DOC) patients. This thesis combines the standard open-source data set CHB-MIT, a clinical data set provided by Huashan Hospital, and additional data collected by the system described in this thesis. These data sets are merged to build a deep learning network model and develop related applications for automatic disease diagnosis for smart medical IoT systems. It mainly includes the use of the clinical data to analyze the characteristics of the EEG signal of DOC patients and building a CNN model to evaluate the patient's level of consciousness automatically. Also, epilepsy is a common disease in neuro-intensive care. In this regard, this thesis also analyzes the differences of various deep learning model between the CHB-MIT data set and clinical data set for epilepsy monitoring, in order to select the most appropriate model for the system being designed and developed. Finally, this thesis also verifies the AI-assisted analysis model.. The results show that the accuracy of the CNN network model based on the evaluation of consciousness disorder on the clinical data set reaches 82%. The CNN+STFT network model based on epilepsy monitoring reaches 90% of the accuracy rate in clinical data. Also, the multi-modal brain monitoring system built is fully verified. The EEG signal collected by this system has a high signal-to-noise ratio, strong anti-interference ability, and is very stable. The built brain monitoring system performs well in real-time and stability. Keywords: TBI, Neurocritical care, Multi-modal, Consciousness Assessment, seizures detection, deep learning, CNN, IoT
    corecore