23 research outputs found

    Moderate Deviations Analysis of Binary Hypothesis Testing

    Full text link
    This paper is focused on the moderate-deviations analysis of binary hypothesis testing. The analysis relies on a concentration inequality for discrete-parameter martingales with bounded jumps, where this inequality forms a refinement to the Azuma-Hoeffding inequality. Relations of the analysis to the moderate deviations principle for i.i.d. random variables and to the relative entropy are considered.Comment: Presented at the 2012 IEEE International Symposium on Information Theory (ISIT 2012) at MIT, Boston, July 2012. It appears in the Proceedings of ISIT 2012 on pages 826-83

    Concentration of Measure Inequalities in Information Theory, Communications and Coding (Second Edition)

    Full text link
    During the last two decades, concentration inequalities have been the subject of exciting developments in various areas, including convex geometry, functional analysis, statistical physics, high-dimensional statistics, pure and applied probability theory, information theory, theoretical computer science, and learning theory. This monograph focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding. In addition to being a survey, this monograph also includes various new recent results derived by the authors. The first part of the monograph introduces classical concentration inequalities for martingales, as well as some recent refinements and extensions. The power and versatility of the martingale approach is exemplified in the context of codes defined on graphs and iterative decoding algorithms, as well as codes for wireless communication. The second part of the monograph introduces the entropy method, an information-theoretic technique for deriving concentration inequalities. The basic ingredients of the entropy method are discussed first in the context of logarithmic Sobolev inequalities, which underlie the so-called functional approach to concentration of measure, and then from a complementary information-theoretic viewpoint based on transportation-cost inequalities and probability in metric spaces. Some representative results on concentration for dependent random variables are briefly summarized, with emphasis on their connections to the entropy method. Finally, we discuss several applications of the entropy method to problems in communications and coding, including strong converses, empirical distributions of good channel codes, and an information-theoretic converse for concentration of measure.Comment: Foundations and Trends in Communications and Information Theory, vol. 10, no 1-2, pp. 1-248, 2013. Second edition was published in October 2014. ISBN to printed book: 978-1-60198-906-

    New-Type Hoeffding's Inequalities and Application in Tail Bounds

    Full text link
    It is well known that Hoeffding's inequality has a lot of applications in the signal and information processing fields. How to improve Hoeffding's inequality and find the refinements of its applications have always attracted much attentions. An improvement of Hoeffding inequality was recently given by Hertz \cite{r1}. Eventhough such an improvement is not so big, it still can be used to update many known results with original Hoeffding's inequality, especially for Hoeffding-Azuma inequality for martingales. However, the results in original Hoeffding's inequality and its refinement one by Hertz only considered the first order moment of random variables. In this paper, we present a new type of Hoeffding's inequalities, where the high order moments of random variables are taken into account. It can get some considerable improvements in the tail bounds evaluation compared with the known results. It is expected that the developed new type Hoeffding's inequalities could get more interesting applications in some related fields that use Hoeffding's results.Comment: 8 pages, 1 figur

    Learning Maximum Margin Channel Decoders

    Full text link
    The problem of learning a channel decoder is considered for two channel models. The first model is an additive noise channel whose noise distribution is unknown and nonparametric. The learner is provided with a fixed codebook and a dataset comprised of independent samples of the noise, and is required to select a precision matrix for a nearest neighbor decoder in terms of the Mahalanobis distance. The second model is a non-linear channel with additive white Gaussian noise and unknown channel transformation. The learner is provided with a fixed codebook and a dataset comprised of independent input-output samples of the channel, and is required to select a matrix for a nearest neighbor decoder with a linear kernel. For both models, the objective of maximizing the margin of the decoder is addressed. Accordingly, for each channel model, a regularized loss minimization problem with a codebook-related regularization term and hinge-like loss function is developed, which is inspired by the support vector machine paradigm for classification problems. Expected generalization error bounds for the error probability loss function are provided for both models, under optimal choice of the regularization parameter. For the additive noise channel, a theoretical guidance for choosing the training signal-to-noise ratio is proposed based on this bound. In addition, for the non-linear channel, a high probability uniform generalization error bound is provided for the hypothesis class. For each channel, a stochastic sub-gradient descent algorithm for solving the regularized loss minimization problem is proposed, and an optimization error bound is stated. The performance of the proposed algorithms is demonstrated through several examples

    Many-agent Reinforcement Learning

    Get PDF
    Multi-agent reinforcement learning (RL) solves the problem of how each agent should behave optimally in a stochastic environment in which multiple agents are learning simultaneously. It is an interdisciplinary domain with a long history that lies in the joint area of psychology, control theory, game theory, reinforcement learning, and deep learning. Following the remarkable success of the AlphaGO series in single-agent RL, 2019 was a booming year that witnessed significant advances in multi-agent RL techniques; impressive breakthroughs have been made on developing AIs that outperform humans on many challenging tasks, especially multi-player video games. Nonetheless, one of the key challenges of multi-agent RL techniques is the scalability; it is still non-trivial to design efficient learning algorithms that can solve tasks including far more than two agents (N≫2N \gg 2), which I name by \emph{many-agent reinforcement learning} (MARL\footnote{I use the world of ``MARL" to denote multi-agent reinforcement learning with a particular focus on the cases of many agents; otherwise, it is denoted as ``Multi-Agent RL" by default.}) problems. In this thesis, I contribute to tackling MARL problems from four aspects. Firstly, I offer a self-contained overview of multi-agent RL techniques from a game-theoretical perspective. This overview fills the research gap that most of the existing work either fails to cover the recent advances since 2010 or does not pay adequate attention to game theory, which I believe is the cornerstone to solving many-agent learning problems. Secondly, I develop a tractable policy evaluation algorithm -- αα\alpha^\alpha-Rank -- in many-agent systems. The critical advantage of αα\alpha^\alpha-Rank is that it can compute the solution concept of α\alpha-Rank tractably in multi-player general-sum games with no need to store the entire pay-off matrix. This is in contrast to classic solution concepts such as Nash equilibrium which is known to be PPADPPAD-hard in even two-player cases. αα\alpha^\alpha-Rank allows us, for the first time, to practically conduct large-scale multi-agent evaluations. Thirdly, I introduce a scalable policy learning algorithm -- mean-field MARL -- in many-agent systems. The mean-field MARL method takes advantage of the mean-field approximation from physics, and it is the first provably convergent algorithm that tries to break the curse of dimensionality for MARL tasks. With the proposed algorithm, I report the first result of solving the Ising model and multi-agent battle games through a MARL approach. Fourthly, I investigate the many-agent learning problem in open-ended meta-games (i.e., the game of a game in the policy space). Specifically, I focus on modelling the behavioural diversity in meta-games, and developing algorithms that guarantee to enlarge diversity during training. The proposed metric based on determinantal point processes serves as the first mathematically rigorous definition for diversity. Importantly, the diversity-aware learning algorithms beat the existing state-of-the-art game solvers in terms of exploitability by a large margin. On top of the algorithmic developments, I also contribute two real-world applications of MARL techniques. Specifically, I demonstrate the great potential of applying MARL to study the emergent population dynamics in nature, and model diverse and realistic interactions in autonomous driving. Both applications embody the prospect that MARL techniques could achieve huge impacts in the real physical world, outside of purely video games
    corecore