2,083 research outputs found

    Uncertainty Relations and Sparse Signal Recovery for Pairs of General Signal Sets

    Full text link
    We present an uncertainty relation for the representation of signals in two different general (possibly redundant or incomplete) signal sets. This uncertainty relation is relevant for the analysis of signals containing two distinct features each of which can be described sparsely in a suitable general signal set. Furthermore, the new uncertainty relation is shown to lead to improved sparsity thresholds for recovery of signals that are sparse in general dictionaries. Specifically, our results improve on the well-known (1+1/d)/2(1+1/d)/2-threshold for dictionaries with coherence dd by up to a factor of two. Furthermore, we provide probabilistic recovery guarantees for pairs of general dictionaries that also allow us to understand which parts of a general dictionary one needs to randomize over to "weed out" the sparsity patterns that prohibit breaking the square-root bottleneck.Comment: submitted to IEEE Trans. Inf. Theor

    Greed is good: algorithmic results for sparse approximation

    Get PDF
    This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho's basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasi-incoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasi-incoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms

    Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming

    Full text link
    Given a linear system in a real or complex domain, linear regression aims to recover the model parameters from a set of observations. Recent studies in compressive sensing have successfully shown that under certain conditions, a linear program, namely, l1-minimization, guarantees recovery of sparse parameter signals even when the system is underdetermined. In this paper, we consider a more challenging problem: when the phase of the output measurements from a linear system is omitted. Using a lifting technique, we show that even though the phase information is missing, the sparse signal can be recovered exactly by solving a simple semidefinite program when the sampling rate is sufficiently high, albeit the exact solutions to both sparse signal recovery and phase retrieval are combinatorial. The results extend the type of applications that compressive sensing can be applied to those where only output magnitudes can be observed. We demonstrate the accuracy of the algorithms through theoretical analysis, extensive simulations and a practical experiment.Comment: Parts of the derivations have submitted to the 16th IFAC Symposium on System Identification, SYSID 2012, and parts to the 51st IEEE Conference on Decision and Control, CDC 201
    • …
    corecore