1,761 research outputs found

    Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties.

    Get PDF
    A new family of highly elastic polyurethanes (PUs) partially based on renewable isosorbide were prepared by reacting hexamethylene diisocyanate with a various ratios of isosorbide and polycarbonate diol 2000 (PCD) via a one-step bulk condensation polymerization without catalyst. The influence of the isorsorbide/PCD ratio on the properties of the PU was evaluated. The successful synthesis of the PUs was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. The resulting PUs showed high number-average molecular weights ranging from 56,320 to 126,000 g mol(-1) and tunable Tg values from -34 to -38℃. The thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The PU films were flexible with breaking strains from 955% to 1795% at from 13.5 to 54.2 MPa tensile stress. All the PUs had 0.9-2.8% weight lost over 4 weeks and continual slow weight loss of 1.1-3.6% was observed within 8 weeks. Although the cells showed a slight lower rate of proliferation than that of the tissue culture polystyrene as a control, the PU films were considered to be cytocompatible and nontoxic. These thermoplastic PUs were soft, flexible and biocompatible polymers, which open up a range of opportunities for soft tissue augmentation and regeneration

    Biodegradable polyol-based polymers. A polymer platform for biomedical applications

    Get PDF

    Biodegradable polyol-based polymers. A polymer platform for biomedical applications

    Get PDF

    Recent Advances in Synthetic Bioelastomers

    Get PDF
    This article reviews the degradability of chemically synthesized bioelastomers, mainly designed for soft tissue repair. These bioelastomers involve biodegradable polyurethanes, polyphosphazenes, linear and crosslinked poly(ether/ester)s, poly(Δ-caprolactone) copolymers, poly(1,3-trimethylene carbonate) and their copolymers, poly(polyol sebacate)s, poly(diol-citrates) and poly(ester amide)s. The in vitro and in vivo degradation mechanisms and impact factors influencing degradation behaviors are discussed. In addition, the molecular designs, synthesis methods, structure properties, mechanical properties, biocompatibility and potential applications of these bioelastomers were also presented

    Synthesis and Properties of Polyurethanes Based on Synthetic Polyhydroxybutyrate for Medical Application

    Get PDF
    Polyurethanes is a group of polymers whose unique properties make them useful in both the construction and the textile industry, and even in tissue engineering. One small, but very significant, urethane group connects specially selected macrochains to obtain a material with established properties

    Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators

    Get PDF
    Ionomeric polymer-metal composite (IPMC) actuators are a type of soft electromechanically active material which offers large displacement, rapid motion with only ~1V stimulus. IPMC’s are entering commercial applications in toys (Ashley 2003) and biomedical devices (Soltanpour 2001; Shahinpoor 2002; Shahinpoor, Shahinpoor et al. 2003; Soltanpour and Shahinpoor 2003; Soltanpour and Shahinpoor 2004), but unfortunately they can only actuate by bending, limiting their utility. Freeform fabrication offers a possible means of producing IPMC with novel geometry and/or tightly integrated with mechanisms which can yield linear or more complex motion. We have developed materials and processes which allow us to freeform fabricate complete IPMC actuators and their fabrication substrate which will allow integration within other freeform fabricated devices. We have produced simple IPMC’s using our multiple material freeform fabrication system, and have demonstrated operation in air for more than 40 minutes and 256 bidirectional actuation cycles. The output stress scaled to input power is two orders of magnitude inferior to that of the best reported performance for devices produced in the traditional manner, but only slightly inferior to devices produced in a more similar manner. Possible explanations and paths to improvement are presented. Freeform fabrication of complete electroactive polymer actuators in unusual geometries, with tailored actuation behavior, and integrated with other freeform fabricated active components, will enable advances in biomedical device engineering, biologically inspired robotics, and other fields. This work constitutes the first demonstration of complete, functional, IPMC actuators produced entirely by freeform fabrication.Mechanical Engineerin

    Characterisation of Implant Supported Soft Tissue Prostheses Produced with 3D Colour Printing Technology

    Get PDF
    The numbers of patients needing facial prostheses has increased in the last few decades due to improving cancer survival rates. The many limitations of the handmade prostheses together with rapid expansion of prototyping in all directions, particularly in producing human anatomically accurate parts, have raised the question of how to employ this technology for rapid manufacturing of facial soft tissue prostheses. The idea started to grow and the project was implemented based on CAD/CAM principles – additive manufacturing technology, by employing layered fabrication of facial prostheses from starch powder and a water based binder and infiltrated with a silicone polymer (SPIS). The project aimed to produce a facial prosthesis by using 3D colour printing, which would match the patient’s skin shade and have the desirable mechanical properties, through a relatively low cost process that would be accessible to the global patient community. This was achieved by providing a simple system for data capture, design and reproducible method of manufacture with a clinically acceptable material. The prosthesis produced has several advantages and few limitations when compared to existing products/prostheses made from silicone polymer (SP). The mechanical properties and durability were not as good as those of the SP made prosthesis but they were acceptable, although the ideal properties have yet to be identified. Colour reproduction and colour matching were more than acceptable, although the colour of the SPIS parts was less stable than the SP colour under natural and accelerated weathering conditions. However, it is acknowledged that neither of the two methods used represent the natural life use on patients and the deficiencies demonstrated in terms of mechanical properties and colour instability were partially inherent in the methodology used, as the project was still at the developmental stage and it was not possible to apply real life tests on patients. Moreover, deficiencies in mechanical and optical properties were probably caused by the starch present, which was used as a scaffold for the SP. Furthermore, a suitable retention system utilising existing components was designed and added to the prosthesis. This enabled the prosthesis to be retained by implants with no need for the addition of adhesive. This would also help to prolong the durability and life span of the prosthesis. The capability of the printer to produce skin shades was determined and it was found that all the skin colours measured fall within the range of the 3D colour printer and thereby the printer was able to produce all the colours required. Biocompatibility was also acceptable, with a very low rate of toxicity. However, no material is 100% safe and each material has a certain range of toxicity at certain concentrations. At this stage of the project, it can be confirmed that facial prostheses were successfully manufactured by using 3D colour printing to match the patient’s skin shade, using biocompatible materials and having the desirable mechanical properties. Furthermore, the technology used enabled prostheses to be produced in a shorter time frame and at a lower cost than conventional SP prostheses. They are also very lightweight, easier to use and possibly more comfortable for the patients. Moreover, this technology has the capability of producing multiple prostheses at the time of manufacture at reduced extra cost, whilst the data can be saved and can be utilised/modified for producing further copies in the future without having to going through all the steps involved with handmade prostheses. Based on the mechanical properties and colour measurements the prostheses will have a finite service life and the recommendation is that these prostheses will need replacing every 6 to 12 months, depending on how the patient handles and maintains the prostheses and whether the prosthesis is being used as an interim or definitive prosthesis. This was largely comparable to existing prostheses but without the time and cost implications for replacement. However, it is acknowledged that further investigations and clinical case studies are required to investigate the “real life” effect on the prostheses and to get feedback from the patients in order to make appropriate improvements to the mechanical properties and the durability of the prosthesis

    In vivo testing of crosslinked polyethers. II. Weight loss, IR analysis, and swelling behavior after implantation

    Get PDF
    As reported in Part I (In vivo testing of crosslinked polyethers. I. Tissue reactions and biodegradation, J. Biomed. Mater. Res., this issue, pp. 307-320), microscopical evaluation after implantation of crosslinked (co)polyethers in rats showed differences in the rate of biodegradation, depending on the presence of tertiary hydrogen atoms in the main chain and the hydrophilicity of the polyether system. In this article (Part II) the biostability will be discussed in terms of weight loss, the swelling behavior, and changes in the chemical structure of the crosslinked polyethers after implantation. The biostability increased in the order poly(POx) < poly(THF-co-OX) < poly(THF) for the relatively hydrophobic polyethers. This confirmed our hypothesis that the absence of tertiary hydrogen atoms would improve the biostability. On the other hand, signs of biodegradation were observed for all polyether system studied. Infrared surface analysis showed that biodegradation was triggered by oxidative attack on the polymeric chain, leading to the formation of carboxylic ester and acid groups. It also was found that in the THF-based (co)polyethers, α-methylene groups were more sensitive than ÎČ-methylene groups. For a hydrophilic poly(THF)/PEO blend, an increase in surface PEO content was found, which might be due to preferential degradation of the PEO domains
    • 

    corecore