403,689 research outputs found

    Triangles in graphs without bipartite suspensions

    Full text link
    Given graphs TT and HH, the generalized Tur\'an number ex(n,T,H)(n,T,H) is the maximum number of copies of TT in an nn-vertex graph with no copies of HH. Alon and Shikhelman, using a result of Erd\H os, determined the asymptotics of ex(n,K3,H)(n,K_3,H) when the chromatic number of HH is greater than 3 and proved several results when HH is bipartite. We consider this problem when HH has chromatic number 3. Even this special case for the following relatively simple 3-chromatic graphs appears to be challenging. The suspension H^\widehat H of a graph HH is the graph obtained from HH by adding a new vertex adjacent to all vertices of HH. We give new upper and lower bounds on ex(n,K3,H^)(n,K_3,\widehat{H}) when HH is a path, even cycle, or complete bipartite graph. One of the main tools we use is the triangle removal lemma, but it is unclear if much stronger statements can be proved without using the removal lemma.Comment: New result about path with 5 edges adde

    Graph-based task libraries for robots: generalization and autocompletion

    Get PDF
    In this paper, we consider an autonomous robot that persists over time performing tasks and the problem of providing one additional task to the robot's task library. We present an approach to generalize tasks, represented as parameterized graphs with sequences, conditionals, and looping constructs of sensing and actuation primitives. Our approach performs graph-structure task generalization, while maintaining task ex- ecutability and parameter value distributions. We present an algorithm that, given the initial steps of a new task, proposes an autocompletion based on a recognized past similar task. Our generalization and auto- completion contributions are eective on dierent real robots. We show concrete examples of the robot primitives and task graphs, as well as results, with Baxter. In experiments with multiple tasks, we show a sig- nicant reduction in the number of new task steps to be provided

    A general theorem in spectral extremal graph theory

    Full text link
    The extremal graphs EX(n,F)\mathrm{EX}(n,\mathcal F) and spectral extremal graphs SPEX(n,F)\mathrm{SPEX}(n,\mathcal F) are the sets of graphs on nn vertices with maximum number of edges and maximum spectral radius, respectively, with no subgraph in F\mathcal F. We prove a general theorem which allows us to characterize the spectral extremal graphs for a wide range of forbidden families F\mathcal F and implies several new and existing results. In particular, whenever EX(n,F)\mathrm{EX}(n,\mathcal F) contains the complete bipartite graph Kk,n−kK_{k,n-k} (or certain similar graphs) then SPEX(n,F)\mathrm{SPEX}(n,\mathcal F) contains the same graph when nn is sufficiently large. We prove a similar theorem which relates SPEX(n,F)\mathrm{SPEX}(n,\mathcal F) and SPEXα(n,F)\mathrm{SPEX}_\alpha(n,\mathcal F), the set of F\mathcal F-free graphs which maximize the spectral radius of the matrix Aα=αD+(1−α)AA_\alpha=\alpha D+(1-\alpha)A, where AA is the adjacency matrix and DD is the diagonal degree matrix

    Generalized Tur\'an problems for even cycles

    Full text link
    Given a graph HH and a set of graphs F\mathcal F, let ex(n,H,F)ex(n,H,\mathcal F) denote the maximum possible number of copies of HH in an F\mathcal F-free graph on nn vertices. We investigate the function ex(n,H,F)ex(n,H,\mathcal F), when HH and members of F\mathcal F are cycles. Let CkC_k denote the cycle of length kk and let Ck={C3,C4,…,Ck}\mathscr C_k=\{C_3,C_4,\ldots,C_k\}. Some of our main results are the following. (i) We show that ex(n,C2l,C2k)=Θ(nl)ex(n, C_{2l}, C_{2k}) = \Theta(n^l) for any l,k≥2l, k \ge 2. Moreover, we determine it asymptotically in the following cases: We show that ex(n,C4,C2k)=(1+o(1))(k−1)(k−2)4n2ex(n,C_4,C_{2k}) = (1+o(1)) \frac{(k-1)(k-2)}{4} n^2 and that the maximum possible number of C6C_6's in a C8C_8-free bipartite graph is n3+O(n5/2)n^3 + O(n^{5/2}). (ii) Solymosi and Wong proved that if Erd\H{o}s's Girth Conjecture holds, then for any l≥3l \ge 3 we have ex(n,C2l,C2l−1)=Θ(n2l/(l−1))ex(n,C_{2l},\mathscr C_{2l-1})=\Theta(n^{2l/(l-1)}). We prove that forbidding any other even cycle decreases the number of C2lC_{2l}'s significantly: For any k>lk > l, we have ex(n,C2l,C2l−1∪{C2k})=Θ(n2).ex(n,C_{2l},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^2). More generally, we show that for any k>lk > l and m≥2m \ge 2 such that 2k≠ml2k \neq ml, we have ex(n,Cml,C2l−1∪{C2k})=Θ(nm).ex(n,C_{ml},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^m). (iii) We prove ex(n,C2l+1,C2l)=Θ(n2+1/l),ex(n,C_{2l+1},\mathscr C_{2l})=\Theta(n^{2+1/l}), provided a strong version of Erd\H{o}s's Girth Conjecture holds (which is known to be true when l=2,3,5l = 2, 3, 5). Moreover, forbidding one more cycle decreases the number of C2l+1C_{2l+1}'s significantly: More precisely, we have ex(n,C2l+1,C2l∪{C2k})=O(n2−1l+1),ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k}\}) = O(n^{2-\frac{1}{l+1}}), and ex(n,C2l+1,C2l∪{C2k+1})=O(n2)ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k+1}\}) = O(n^2) for l>k≥2l > k \ge 2. (iv) We also study the maximum number of paths of given length in a CkC_k-free graph, and prove asymptotically sharp bounds in some cases.Comment: 37 Pages; Substantially revised, contains several new results. Mistakes corrected based on the suggestions of a refere
    • …
    corecore