2 research outputs found

    DESlib: A Dynamic ensemble selection library in Python

    Full text link
    DESlib is an open-source python library providing the implementation of several dynamic selection techniques. The library is divided into three modules: (i) \emph{dcs}, containing the implementation of dynamic classifier selection methods (DCS); (ii) \emph{des}, containing the implementation of dynamic ensemble selection methods (DES); (iii) \emph{static}, with the implementation of static ensemble techniques. The library is fully documented (documentation available online on Read the Docs), has a high test coverage (codecov.io) and is part of the scikit-learn-contrib supported projects. Documentation, code and examples can be found on its GitHub page: https://github.com/scikit-learn-contrib/DESlib.Comment: Paper introducing DESlib: A dynamic ensemble selection library in Pytho

    META-DES.Oracle: Meta-learning and feature selection for ensemble selection

    Full text link
    The key issue in Dynamic Ensemble Selection (DES) is defining a suitable criterion for calculating the classifiers' competence. There are several criteria available to measure the level of competence of base classifiers, such as local accuracy estimates and ranking. However, using only one criterion may lead to a poor estimation of the classifier's competence. In order to deal with this issue, we have proposed a novel dynamic ensemble selection framework using meta-learning, called META-DES. An important aspect of the META-DES framework is that multiple criteria can be embedded in the system encoded as different sets of meta-features. However, some DES criteria are not suitable for every classification problem. For instance, local accuracy estimates may produce poor results when there is a high degree of overlap between the classes. Moreover, a higher classification accuracy can be obtained if the performance of the meta-classifier is optimized for the corresponding data. In this paper, we propose a novel version of the META-DES framework based on the formal definition of the Oracle, called META-DES.Oracle. The Oracle is an abstract method that represents an ideal classifier selection scheme. A meta-feature selection scheme using an overfitting cautious Binary Particle Swarm Optimization (BPSO) is proposed for improving the performance of the meta-classifier. The difference between the outputs obtained by the meta-classifier and those presented by the Oracle is minimized. Thus, the meta-classifier is expected to obtain results that are similar to the Oracle. Experiments carried out using 30 classification problems demonstrate that the optimization procedure based on the Oracle definition leads to a significant improvement in classification accuracy when compared to previous versions of the META-DES framework and other state-of-the-art DES techniques.Comment: Paper published on Information Fusio
    corecore