3,628 research outputs found

    RON: Reverse Connection with Objectness Prior Networks for Object Detection

    Full text link
    We present RON, an efficient and effective framework for generic object detection. Our motivation is to smartly associate the best of the region-based (e.g., Faster R-CNN) and region-free (e.g., SSD) methodologies. Under fully convolutional architecture, RON mainly focuses on two fundamental problems: (a) multi-scale object localization and (b) negative sample mining. To address (a), we design the reverse connection, which enables the network to detect objects on multi-levels of CNNs. To deal with (b), we propose the objectness prior to significantly reduce the searching space of objects. We optimize the reverse connection, objectness prior and object detector jointly by a multi-task loss function, thus RON can directly predict final detection results from all locations of various feature maps. Extensive experiments on the challenging PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO benchmarks demonstrate the competitive performance of RON. Specifically, with VGG-16 and low resolution 384X384 input size, the network gets 81.3% mAP on PASCAL VOC 2007, 80.7% mAP on PASCAL VOC 2012 datasets. Its superiority increases when datasets become larger and more difficult, as demonstrated by the results on the MS COCO dataset. With 1.5G GPU memory at test phase, the speed of the network is 15 FPS, 3X faster than the Faster R-CNN counterpart.Comment: Project page will be available at https://github.com/taokong/RON, and formal paper will appear in CVPR 201

    Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation

    Full text link
    Visual tracking is a fundamental problem in computer vision. Recently, some deep-learning-based tracking algorithms have been achieving record-breaking performances. However, due to the high complexity of deep learning, most deep trackers suffer from low tracking speed, and thus are impractical in many real-world applications. Some new deep trackers with smaller network structure achieve high efficiency while at the cost of significant decrease on precision. In this paper, we propose to transfer the feature for image classification to the visual tracking domain via convolutional channel reductions. The channel reduction could be simply viewed as an additional convolutional layer with the specific task. It not only extracts useful information for object tracking but also significantly increases the tracking speed. To better accommodate the useful feature of the target in different scales, the adaptation filters are designed with different sizes. The yielded visual tracker is real-time and also illustrates the state-of-the-art accuracies in the experiment involving two well-adopted benchmarks with more than 100 test videos.Comment: 6 page

    A Review of Object Detection Models based on Convolutional Neural Network

    Full text link
    Convolutional Neural Network (CNN) has become the state-of-the-art for object detection in image task. In this chapter, we have explained different state-of-the-art CNN based object detection models. We have made this review with categorization those detection models according to two different approaches: two-stage approach and one-stage approach. Through this chapter, it has shown advancements in object detection models from R-CNN to latest RefineDet. It has also discussed the model description and training details of each model. Here, we have also drawn a comparison among those models.Comment: 17 pages, 11 figures, 1 tabl
    • …
    corecore