52 research outputs found

    New Complexity Bounds for Certain Real Fewnomial Zero Sets

    Full text link
    Consider real bivariate polynomials f and g, respectively having 3 and m monomial terms. We prove that for all m>=3, there are systems of the form (f,g) having exactly 2m-1 roots in the positive quadrant. Even examples with m=4 having 7 positive roots were unknown before this paper, so we detail an explicit example of this form. We also present an O(n^{11}) upper bound for the number of diffeotopy types of the real zero set of an n-variate polynomial with n+4 monomial terms.Comment: 8 pages, no figures. Extended abstract accepted and presented at MEGA (Effective Methods in Algebraic Geometry) 200

    Counting Real Connected Components of Trinomial Curve Intersections and m-nomial Hypersurfaces

    Full text link
    We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees were much larger, e.g., 248832 (for just the non-degenerate roots) via a famous general result of Khovanski. Our bound is sharp, allows real exponents, allows degeneracies, and extends to certain systems of n-variate fewnomials, giving improvements over earlier bounds by a factor exponential in the number of monomials. We also derive analogous sharpened bounds on the number of connected components of the real zero set of a single n-variate m-nomial.Comment: 27 pages, 2 figures. Extensive revision of math.CO/0008069. To appear in Discrete and Computational Geometry. Technique from main theorem (Theorem 1) now pushed as far as it will go. In particular, Theorem 1 now covers certain fewnomial systems of type (n+1,...,n+1,m) and certain non-sparse fewnomial systems. Also, a new result on counting non-compact connected components of fewnomial hypersurfaces (Theorem 3) has been adde

    Some Speed-Ups and Speed Limits for Real Algebraic Geometry

    Get PDF
    We give new positive and negative results (some conditional) on speeding up computational algebraic geometry over the reals: (1) A new and sharper upper bound on the number of connected components of a semialgebraic set. Our bound is novel in that it is stated in terms of the volumes of certain polytopes and, for a large class of inputs, beats the best previous bounds by a factor exponential in the number of variables. (2) A new algorithm for approximating the real roots of certain sparse polynomial systems. Two features of our algorithm are (a) arithmetic complexity polylogarithmic in the degree of the underlying complex variety (as opposed to the super-linear dependence in earlier algorithms) and (b) a simple and efficient generalization to certain univariate exponential sums. (3) Detecting whether a real algebraic surface (given as the common zero set of some input straight-line programs) is not smooth can be done in polynomial time within the classical Turing model (resp. BSS model over C) only if P=NP (resp. NP<=BPP). The last result follows easily from an unpublished result of Steve Smale.Comment: This is the final journal version which will appear in Journal of Complexity. More typos are corrected, and a new section is added where the bounds here are compared to an earlier result of Benedetti, Loeser, and Risler. The LaTeX source needs the ajour.cls macro file to compil
    • …
    corecore