1,238 research outputs found

    Writing Reusable Digital Geometry Algorithms in a Generic Image Processing Framework

    Full text link
    Digital Geometry software should reflect the generality of the underlying mathe- matics: mapping the latter to the former requires genericity. By designing generic solutions, one can effectively reuse digital geometry data structures and algorithms. We propose an image processing framework focused on the Generic Programming paradigm in which an algorithm on the paper can be turned into a single code, written once and usable with various input types. This approach enables users to design and implement new methods at a lower cost, try cross-domain experiments and help generalize resultsComment: Workshop on Applications of Discrete Geometry and Mathematical Morphology, Istanb : France (2010

    Distance, granulometry, skeleton

    Get PDF
    In this chapter, we present a series of concepts and operators based on the notion of distance. As often with mathematical morphology, there exists more than one way to present ideas, that are simultaneously equivalent and complementary. Here, our problem is to present methods to characterize sets of points based on metric, geometry and topology considerations. An important concept is that of the skeleton, which is of fundamental importance in pattern recognition, and has many practical application

    A 3D Sequential Thinning Scheme Based on Critical Kernels

    Get PDF
    International audienceWe propose a new generic sequential thinning scheme based on the critical kernels framework. From this scheme, we derive sequential algorithms for obtaining ultimate skeletons and curve skeletons. We prove some properties of these algorithms, and we provide the results of a quantitative evaluation that compares our algorithm for curve skeletons with both sequential and parallel ones

    Fractional maximal functions in metric measure spaces

    Full text link
    We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to H\"older continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous

    Nucleation-free 3D3D rigidity

    Get PDF
    When all non-edge distances of a graph realized in Rd\mathbb{R}^{d} as a {\em bar-and-joint framework} are generically {\em implied} by the bar (edge) lengths, the graph is said to be {\em rigid} in Rd\mathbb{R}^{d}. For d=3d=3, characterizing rigid graphs, determining implied non-edges and {\em dependent} edge sets remains an elusive, long-standing open problem. One obstacle is to determine when implied non-edges can exist without non-trivial rigid induced subgraphs, i.e., {\em nucleations}, and how to deal with them. In this paper, we give general inductive construction schemes and proof techniques to generate {\em nucleation-free graphs} (i.e., graphs without any nucleation) with implied non-edges. As a consequence, we obtain (a) dependent graphs in 3D3D that have no nucleation; and (b) 3D3D nucleation-free {\em rigidity circuits}, i.e., minimally dependent edge sets in d=3d=3. It additionally follows that true rigidity is strictly stronger than a tractable approximation to rigidity given by Sitharam and Zhou \cite{sitharam:zhou:tractableADG:2004}, based on an inductive combinatorial characterization. As an independently interesting byproduct, we obtain a new inductive construction for independent graphs in 3D3D. Currently, very few such inductive constructions are known, in contrast to 2D2D
    • …
    corecore