10 research outputs found

    A secure image steganography based on JND model

    Get PDF
    Minimizing distortion produced by embedding process is very important to improve the security of hidden message and maintain the high visual quality of stego images. To achieve these objectives, an effective strategy is to perform pixel selection which is well-known as a channel selection rule. In this approach, a pixel associated with the smallest image degradation is chosen to carry secret bits. From these facts, in this paper, a new secure channel selection rule for digital images in spatial domain is designed and proposed. In this new approach, the modified matrix embedding method is utilized as data hiding method because it introduces more than one embedding change to be performed. This enables us to select a suitable pixel to embed message bits with less degradation yielded in a stego-image. In pixel selection of the proposed method, a just noticeable difference value and gradient value of a considering pixel are employed together. The experimental results (which were conducted on 10,000 uncompressed images) indicate that stego images of the proposed approach achieve a higher perceptual quality and security than those of the stego-images created by the previous approaches

    Keamanan Pesan Rahasia Menggunakan Steganografi DCT (Discrete Cosine Transform) pada Citra JPEG

    Get PDF
    Abstract The  least significant-bit (LSB) based techniques are very popular for steganography in spatial domain. The simplest LSB technique simply replaces the LSB in the cover image with the  bits from secret information. Further advanced techniques use some criteria to identify the pixels in which LSB(s) can be replaced with the bits of secret information. In Discrete Cosine Transform (DCT) based technique insertion of secret information in carrier depends on the DCT coefficients. Any DCT coefficient value above proper threshold is a potential place for insertion of secret information. Keywords : Discrete Cosine Transform (DCT), steganography, secret message AbstrakPada steganografi domain spasial, teknik least significant-bit (LSB) merupakan teknik yang paling banyak digunakan pada steganografi. Teknik yang sederhana yang hanya mengubah nilai LSB pada cover image dengan nilai bit pesan rahasia, atau dengan teknik yang lebih baik lagi yaitu dengan menentukan bit-bit LSB mana yang akan dilakukan pergantian nilai bit. Lain halnya dengan metode Discrete Cosine Transform (DCT), teknik steganografi ini akan menyembunyikan informasi rahasia tergantung dari nilai Koefisien DCT. Kata Kunci : Steganografi, DCT, Citra, JPEG, Pesan Rahasi

    Forensic Analysis of Android Steganography Apps

    Get PDF
    The processing power of smartphones supports steganographic algorithms that were considered to be too computationally intensive for handheld devices. Several steganography apps are now available on mobile phones to support covert communications using digital photographs. This chapter focuses on two key questions: How effectively can a steganography app be reverse engineered? How can this knowledge help improve the detection of steganographic images and other related files? Two Android steganography apps, PixelKnot and Da Vinci Secret Image, are analyzed. Experiments demonstrate that they are constructed in very different ways and provide different levels of security for hiding messages. The results of detecting steganography files, including images generated by the apps, using three software packages are presented. The results point to an urgent need for further research on reverse engineering steganography apps and detecting images produced by these apps

    Perbandingan Kapasitas Pesan pada Steganografi DCT Sekuensial dan Steganografi DCT F5 dengan Penerapan Point Operation Image Enhancement

    Get PDF
    Steganographic  process on the DCT transform is generally done on the value of DCT quantization process results that have a value other than 0, this relates to the distribution of the diversity of pixels in the image. Applying point operation of image enhancement (POIE) in the form of histogram equalization, contrast stretching, brigthening and gamma correction on the image of the reservoir is associated with the image histogram . Test parameters used is the number of bits that can be accommodated message, PSNR and MSE value, and the value of DCT coefficients quantization results.     Based on test results that have to be got several conclusions that capacity steganographic message on DCT sequential greater than the DCT F5 steganography either before or after application of the application POIE, stego image quality on DCT steganography F5 better than the sequential DCT steganography well before the application POIE and after application of POIE, both F5 and steganography steganography DCT DCT sequential equally resistant to manipulation of stego image

    Perbandingan Kapasitas Pesan pada Steganografi DCT Sekuensial dan Steganografi DCT F5 dengan Penerapan Point Operation Image Enhancement

    Get PDF
    Steganographic  process on the DCT transform is generally done on the value of DCT quantization process results that have a value other than 0, this relates to the distribution of the diversity of pixels in the image. Applying point operation of image enhancement (POIE) in the form of histogram equalization, contrast stretching, brigthening and gamma correction on the image of the reservoir is associated with the image histogram . Test parameters used is the number of bits that can be accommodated message, PSNR and MSE value, and the value of DCT coefficients quantization results.    Based on test results that have to be got several conclusions that capacity steganographic message on DCT sequential greater than the DCT F5 steganography either before or after application of the application POIE, stego image quality on DCT steganography F5 better than the sequential DCT steganography well before the application POIE and after application of POIE, both F5 and steganography steganography DCT DCT sequential equally resistant to manipulation of stego image

    Coverless image steganography using morphed face recognition based on convolutional neural network

    Get PDF
    In recent years, information security has become a prime issue of worldwide concern. To improve the validity and proficiency of the image data hiding approach, a piece of state-of-the-art secret information hiding transmission scheme based on morphed face recognition is proposed. In our proposed data hiding approach, a group of morphed face images is produced from an arranged small-scale face image dataset. Then, a morphed face image which is encoded with a secret message is sent to the receiver. The receiver uses powerful and robust deep learning models to recover the secret message by recognizing the parents of the morphed face images. Furthermore, we design two novel Convolutional Neural Network (CNN) architectures (e.g. MFR-Net V1 and MFR-Net V2) to perform morphed face recognition and achieved the highest accuracy compared with existing networks. Additionally, the experimental results show that the proposed schema has higher retrieval capacity and accuracy and it provides better robustness

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography
    corecore