8,450 research outputs found

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    CMOS OTA-C high-frequency sinusoidal oscillators

    Get PDF
    Several topology families are given to implement practical CMOS sinusoidal oscillators by using operational transconductance amplifier-capacitor (OTA-C) techniques. Design techniques are proposed taking into account the CMOS OTA's dominant nonidealities. Building blocks are presented for amplitude control, both by automatic gain control (AGC) schemes and by limitation schemes. Experimental results from 3- and 2- mu m CMOS (MOSIS) prototypes that exhibit oscillation frequencies of up to 69 MHz are obtained. The amplitudes can be adjusted between 1 V peak to peak and 100 mV peak to peak. Total harmonic distortions from 2.8% down to 0.2% have been measured experimentally.Comisión Interministerial de Ciencia y Tecnología ME87-000

    Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness

    Get PDF
    In this paper, we use statistical three-dimensional (3-D) simulations to study the impact of the gate line edge roughness (LER) on the intrinsic parameters fluctuations in deep decananometer (sub 50 nm) gate MOSFETs. The line edge roughness is introduced using a Fourier synthesis technique based on the power spectrum of a Gaussian autocorrelation function. In carefully designed simulation experiments, we investigate the impact of the rms amplitude /spl Delta/ and the correlation length /spl Lambda/ on the intrinsic parameter fluctuations in well scaled, but simple devices with fixed geometry as well as the channel length and width dependence of the fluctuations at fixed LER parameters. For the first time, we superimpose in the simulations LER and random discrete dopants and investigate their relative contribution to the intrinsic parameter fluctuations in the investigated devices. For particular MOSFET geometries, we were able to identify the regions where each of these two sources of intrinsic parameter fluctuations dominates

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    On the Design of Voltage-Controlled Sinusoidal Oscillators Using OTA's

    Get PDF
    A unified systematic approach to the design of voltage-controlled oscillators using only operational transconductance amplifiers (OTA's) and capacitors is discussed in this paper. Two classical oscillator models, i.e., quadrature and bandpass-based, are employed to generate several oscillator structures. They are very appropriate for silicon monolithic implementations. The resulting oscillation frequencies are proportional to the transconductance of the OTA and this makes the reported structures well-suited for building voltage controlled oscillators (VCO's). Amplitude stabilization circuits using both automatic gain control (AGC) mechanisms and limitation schemes are presented which are compatible with the transconductance amplifier capacitor oscillator (TACO). Experimental results from bipolar breadboard and CMOS IC prototypes are included showing good potential of OTA-based oscillators for high frequency VCO operation.Comisión Interministerial de Ciencia y Tecnología ME87-000

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table
    corecore