25,880 research outputs found

    Multiaccess Channels with State Known to Some Encoders and Independent Messages

    Full text link
    We consider a state-dependent multiaccess channel (MAC) with state non-causally known to some encoders. We derive an inner bound for the capacity region in the general discrete memoryless case and specialize to a binary noiseless case. In the case of maximum entropy channel state, we obtain the capacity region for binary noiseless MAC with one informed encoder by deriving a non-trivial outer bound for this case. For a Gaussian state-dependent MAC with one encoder being informed of the channel state, we present an inner bound by applying a slightly generalized dirty paper coding (GDPC) at the informed encoder that allows for partial state cancellation, and a trivial outer bound by providing channel state to the decoder also. The uninformed encoders benefit from the state cancellation in terms of achievable rates, however, appears that GDPC cannot completely eliminate the effect of the channel state on the achievable rate region, in contrast to the case of all encoders being informed. In the case of infinite state variance, we analyze how the uninformed encoder benefits from the informed encoder's actions using the inner bound and also provide a non-trivial outer bound for this case which is better than the trivial outer bound.Comment: Accepted to EURASIP Journal on Wireless Communication and Networking, Feb. 200

    The Capacity of the Quantum Multiple Access Channel

    Full text link
    We define classical-quantum multiway channels for transmission of classical information, after recent work by Allahverdyan and Saakian. Bounds on the capacity region are derived in a uniform way, which are analogous to the classically known ones, simply replacing Shannon entropy with von Neumann entropy. For the single receiver case (multiple access channel) the exact capacity region is determined. These results are applied to the case of noisy channels, with arbitrary input signal states. A second issue of this work is the presentation of a calculus of quantum information quantities, based on the algebraic formulation of quantum theory.Comment: 7 pages, requires IEEEtran2e.cl

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure
    • …
    corecore